
Open Banking and APIs in Asia:
Lessons From the Industry

A report from Kapronasia in collaboration with Red Hat

April 2021

Contents

Executive Summary 2

Open Banking in Asia: A Brief Look at Where we are Today 4

The Need for a Comprehensive Open Banking Integration Strategy 5

Digital/Open Banking Implementation Challenges and Solutions 7

Conclusion 16

Methodology
For this report, Kapronasia conducted both primary and secondary research in Asia to obtain
the most relevant insights from the industry around APIs and Open Banking.

Secondary Research: Sources included but were not limited to, market intelligence reports and
studies by industry experts and professional services networks, white papers, educational
materials, media articles, and marketing collateral.

Primary Research: Interviews were secured from relevant players across the ecosystem,
including financial institutions, fintechs, and industry experts.

2Open Banking and APIs in Asia

Executive Summary
Both regulatory and competitive forces have been
making Open Banking a new reality across the
region. Banks are now realizing that if they want to
keep their existing customers, acquire new ones, and
play a greater role in their customers’ lives then they
must become more customer focused, while offering
a broader range of digital products and services. To
do this effectively, banks will no longer be able to be
vertically integrated institutions and will be required
to shift to a distributed Open Banking model to
collaborate with third parties. Such a model requires
APIs, the digital ports that enable communication
between services.

Open Banking technology, however, does not fit
neatly with many legacy core banking systems, which
are currently preventing effective interoperability
with Open Banking APIs. Most legacy systems have a
complex and inflexible IT architecture, whereas Open
Banking demands flexibility, agility, and scalability.
Moreover, banks’ core systems are transactional in
nature while the digital/Open Banking flow is based
on a customer-centric journey which requires service
orchestration – the sequencing of “microservices”
glued together with the appropriate business logic.

Because replacing legacy core systems is an
expensive, risky, and lengthy process, many financial
institutions (FIs) have been breaking out core system
functionalities that are essential to handling the

digital customer journey, by adopting a microservices
based architecture. This then enables banks to
abstract away from their core system platforms and
operate with a more modern, scalable infrastructure
that sits on top of these legacy systems.

While this approach enables banks to become
modular and platform-based in order to effectively
collaborate with players in the financial services
ecosystem, many FIs have in fact failed to build this
abstraction layer correctly. Such an abstraction layer
should include a first layer of microservices that
abstracts the service away from the core systems. A
second layer that orchestrates these base services to
turn them into the bank’s processes; and a third layer
which is the API Gateway, an API management tool
that exposes microservices and hosts other functions
such as authentication, security policy management,
and load balancing. Each layer comes with its own
technical difficulties, however, which makes it hard
for banks to get Open API Banking right.

At the microservices layer, while banks have often
been able to break down their services, many have
struggled to create true microservices, which are an
order of magnitude more difficult to build. Without
these true microservices, banks are unable to have
horizontal scalability – the ability to run parallel,
distributed processes across the infrastructure
to handle the load. The problem occurs both on

3Open Banking and APIs in Asia

premises and on the cloud and therefore the limitation
is not due to the choice of underlying infrastructure,
but rather is an application architecture issue. Such
horizontal scaling provides not only resilience, but also
real elasticity by enabling applications to utilize the full
capabilities of the cloud.

At the orchestration layer, many banks have either
neglected to build orchestration entirely and
have simply atomized their backends and built
microservices exposed by APIs on top of these. Or,
where there is orchestration, it will be a technical
orchestration, rather than a business process
orchestration. Both instances speak to the fact that
the end customer is often missed out of these API
initiatives.

In the first instance, APIs have been exposed for
the sake of it rather than evaluating how these are
going to impact consumer behavior. There is also no
orchestration to deliver the customer journey. In the

second instance, a purely technical orchestration
will lack the appropriate business logic to guide the
customer journey resulting in a suboptimal customer
experience.

At least where external APIs are concerned, banks must
always put the customer journey front and center. That
means that developers for their part will need to take
a customer-centric approach when designing APIs,
which will include the need to think carefully about the
underlying business process at the orchestration layer
that will deliver the customer journey.

In the end, the winners will be the ones that can build a
truly differentiated customer offering based on efficient
service platform(s), which could be a mix of both
internal and external services. It is therefore going to
be critical for banks to have the right architecture and
organizational design in place to rise to the challenge.

4Open Banking and APIs in Asia

Open Banking is Taking Off in Asia
Open Banking, the system of allowing access and
control of consumer banking and financial accounts
through third-party applications via open Application
Programming Interfaces (APIs), is sweeping across
Asia-Pacific. As one might expect from such a diverse
region, the roadmap for Open Banking development
varies. Some jurisdictions such as Australia, Hong
Kong, and Singapore are forging ahead.

Drivers of this shift are both regulatory and
commercial. On the regulatory side, regulators in
APAC have on the whole taken a “soft” approach,
preferring to support Open Banking with specific
policies and guidance rather than strict regulations
and timelines. Regulators in Japan, South Korea, and
Singapore, for example, have created API “playbooks”
encouraging API developments and perimeters.

Only Australia and Hong Kong have so far opted
for a regulatory-driven approach. In Australia,
Open Banking was launched under the Consumer
Data Right (CDR) Act introduced to the banking
sector in July 2020.1 In Hong Kong, the Hong Kong
Monetary Authority (HKMA) published the “Open
API Framework for the Hong Kong Banking Sector”
in July 2018, setting out a four-phase approach for
banks to implement Open APIs.2 In contrast to this
top-down regulatory approach, in markets such as
India, Thailand, and Malaysia, Open Banking has
been driven more by bottom-up customer demand.

Competition is a Key Driver
If regulators have been encouraging, it has been
competitive forces which have been making Open
Banking a new reality across the region. The
larger incumbent banks within APAC are feeling
competitive pressure from the emergence of digital
banks and have understood that they must innovate

1 “What Is the Consumer Data Right?” Office of the Australian Information Commissioner,
Accessed March 28, 2021. https://www.oaic.gov.au/consumer-data-right/what-is-the-consumer-
data-right/.
2 “Open Application Programming Interface for the Banking Sector.” HK Monetary Authority,
May 4, 2020. https://www.hkma.gov.hk/eng/key-functions/international-financial-centre/
fintech/open-application-programming-interface-api-for-the-banking-sector/. EMEA Centre for
Regulatory Strategy, “Open Banking around the World.” Deloitte, Accessed March 28, 2021. https://
www2.deloitte.com/tw/en/pages/financial-services/articles/open-banking-around-the-world.html.

if they want to avoid losing market share to these new
players. Any market share lost now will be harder to
recover later as the innovation-driven marketplace
becomes more competitive and crowded.

To remain competitive, these larger incumbents are
developing and launching their own new products
and services, often in collaboration with each other
and with FinTechs. According to a payment service
provider interviewed for this report, a large East
Asian bank came to them to partner because they
were losing business to digital banks and realized that
they needed to have a product that gave them that
feature parity to prevent customer bleed or churn.

The small and mid-market incumbents, meanwhile,
are being squeezed from both ends. Like the larger
incumbents, they face similar competitive pressures
from the new challenger banks, but unlike their larger
counterparts they are unable to compete on volume
and/or cost. Their approach is more likely to focus on
their core relationship business and to partner with a
digital bank to get access to low-cost digital services
without having to build these themselves.

The digital banks, meanwhile, also have an interest
in Open Banking. Being startups, these are primarily
driven by customer acquisition and so a big hook
for them to gain the kind of customers they want to
onboard, open accounts, and monetize the customer
relationship is to be able to make the business case
that their product is the cheapest, fastest, and/or most
transparent. These too then will be incentivized to
partner with organizations that can provide them
with that edge, enabled by Open Banking.

Should Open Banking become more regulated within
the region and as Open APIs come to the fray, the
competitive pressure from digital aspirants, e-wallet
providers, and account aggregators is going to
intensify, further driving banks to innovate to keep
customers engaged on their platforms. Organizations
that are not adequately prepared will face higher costs
of tactical change and find themselves at a significant
disadvantage as the marketplace rapidly evolves.

Open Banking in Asia: A brief look at where we are Today

5Open Banking and APIs in Asia

Banks Must Shift to Customer-Centric
Processes
To meet the demands of digital/Open Banking
and build a truly differentiated customer offering
banks will have to move from a monolithic, legacy
architecture to a cloud-native, microservices-based
architecture. Such a shift will also require a new
organizational structure, from traditional waterfall
methods to more agile approaches.

The problem for banks, however, is how to replace
their core banking systems with something more
modern and scalable?

One solution for banks is to adopt a Domain Oriented
Microservices Architecture, while keeping their
existing legacy, core systems. This will allow banks to
abstract away from their core system platforms and
operate with a more modern, scalable infrastructure
that will sit on top of these legacy systems. Done
right, such architecture will enable banks to become
modular and platform-based in order to effectively
collaborate with players in the financial services
ecosystem.

A Domain Oriented Microservices Architecture
solution that enables banks to abstract away from
their core systems, migrating critical customer-
facing functionality and data to new service-based
platforms, typically involves three-layers:

• A first layer of microservice function that banks
need to build on top of their core system. This
abstracts the service away from the core system
and breaks it down into its core functions,
but these functions do not give the bank their
business process. They give banks access to data
and enable them to trigger simple, unit-level
transactional operations, i.e., to create an account,
book loan, etc, but without the business process
layer around them.

• A second layer that orchestrates these base
services to turn them into the bank’s processes.
A proper business orchestration manages
sequencing, while gluing services and logic
together. Often banks will atomize their backend,
exposing microservices via APIs, but will then fail
to build the business orchestration layer on top
that combines/aggregates these different atomic
services into something more like a business
API or a business service. Or, where there is
orchestration, it is a technical orchestration rather
than a business orchestration.

• A third layer which is the API Gateway that acts
as a reverse proxy to accept all API calls, aggregate
the various services required to fulfill them,
and return the appropriate result. API gateways
usually also handle common tasks that are used
across a system of API services, such as user
authentication/authorization, rate limiting, and
statistics.

The Need for a Comprehensive Open Banking
Integration Strategy

6Open Banking and APIs in Asia

It is important for banks to decide who manages
the API Gateway and to establish governance rules
around it and the APIs that it hosts. There should be
a governance body that rather than prescribes API
standards; guides and defines standardized practices
for API implementation that applies across the entire
organization. Implementers, for their part, should
then understand and apply standards where they fit,
while documenting and reviewing any deviation.

Moreover, while the prescription of API standards
would be too rigid, a free for all would invite
inconsistency. To thread this needle, firms might
want to consider using an “intelligence scaffold.” This
is a framework for API design which includes what
must be included, what should be included, and what
would be nice to have included in the design of the

API. It is then up to organizations or groups within
organizations to decide how far to take “musts,” what
are “should” elements, and what are “nice to have”
elements.

Sham Arora, CIO, Global Head of Enterprise
Technology at Standard Chartered says that the Bank
runs a tight governance around APIs that acts as an
API barometer. For example, an API Governance
committee looks at how fit an API is for the external
client in terms of whether it embodies quality with
regards to everything essential for API health: The
availability, performance, and functional correctness
of not just the API endpoint, but also the business
transactions that the API supports.

7Open Banking and APIs in Asia

Legacy Core Systems
Open Banking technology often does not fit neatly
with many legacy core banking systems, which are
currently preventing effective interoperability with
Open Banking APIs. Most legacy systems have a
complex and inflexible IT architecture, whereas Open
Banking demands flexibility, agility, and scalability.
Moreover, banks’ core systems are transactional in
nature while the digital/Open Banking flow is based
on a customer-centric journey which requires service
orchestration – the execution of the operational
and functional processes involved in an end-to-end
service.

Online performance is another issue for core systems
which have been traditionally optimized for batch
performance. It is not that legacy core systems are
necessarily slow, they are not. Modern enterprise-
grade core systems can easily manage a 10,000
transaction per second (TPS) event if they are having
to process a batch file. The issue for the core system is
more having to manage a 10,000 TPS event in real-
time online, if it is coming from 10,000 people that all
want to check their accounts at once. In this case the
digital interface is likely going to face an unacceptably
slow delay in receiving a response.

To manage the shift towards Open Banking, core
banking systems need restructuring. However, core
banking platforms are notoriously difficult to manage

and to upgrade. Furthermore, banks are reluctant to
touch them given that they are the hearts of the bank.
If things go wrong, the bank could lose millions. While
banks have tried to put multiple fixes in place, the
backend of their core system is still a COBOL based
banking system. They have been able to orchestrate
it so that they can talk to APIs, but this is still a very
suboptimal solution.

System Elasticity and Single Point of
Failure
Banks looking to integrate their services with
external APIs have to be able to provision for demand
fluctuations, which are often difficult to predict.
That means that their systems have to be resilient to
cope with these sudden surges and any additional
services that the bank may want to add around their
core systems. If a bank’s systems fail while delivering
a service which is integrated with a third-party, it
is very difficult for a bank to rectify the issue with
the end user and a bad customer experience can
ultimately damage the bank’s reputation. Banks
therefore need to find a way for their backend and
core banking systems to cope with the high volumes
and network traffic that API queries can create.

Where legacy systems typically struggle is not so
much with vertical scaling – increasing or decreasing
computing resources, as banks can typically just add
computing power to an existing system. Rather, what

Digital/Open Banking Implementation Challenges and
Solutions

8Open Banking and APIs in Asia

banks struggle with is horizontal scaling – where a
sequential piece of logic is broken down into smaller
pieces so that they can be executed in parallel across
multiple machines. To understand the benefits of
horizontal scaling we need to look at resilience, single
point of failure, impact, and elasticity.

Starting with resilience, the problem with a
monolithic core system is not so much that it is
typically not resilient. Core systems have in fact
been historically extremely stable, mostly because
traditionally these were largely left alone with little
change occurring on the system. However, because
these monoliths are all or nothing, when they do
fail, everything fails, as the DBS outage back in 2010
illustrated.3 The impact to the bank is therefore huge
and the penalty from the regulator for not recovering
your services within the allocated timeframe is
substantial.

Digital/Open Banking revolves around the addition
of services for a bank’s customers, however as each
additional service is added around the core system
and the number of sessions increase, the risk of
an individual service and therefore all the services
going down increases. Such a monolithic core system
introduces then what is known as a single point of
dependency or single point of failure. While the risk of
the core system failing may be small, the impact of a
failure is enormous.

This then brings us back to horizontal scalability.
If you can add parallel processes, which can be
distributed across multiple machines, it will decrease
the risk of a single service going down as the load
can be distributed. In addition, parallel machines can
continue to offer a service even if it fails on a single
machine. That makes recovery easier and less costly
in terms of potential penalties from the regulator.
But the other major benefit is that if a service does
go down, it will not then bring down all your other
services as it would on a monolithic core system.

3 Thomson Reuters, “Singapore Bank Suffers Massive IT Failure.” Reuters, July 7,
2010. https://www.reuters.com/article/urnidgns852573c40069388048257758000f69f1-
idUS213136691820100706.

Achieving horizontal scalability, is however,
architecturally challenging. That is because
guaranteeing atomicity across a highly distributed
system is difficult. Atomicity prevents updates to
the database occurring only partially. Such updates
must either succeed completely or fail completely.
The alternative, leaving every system to update
asynchronously, introduces a high risk of errors
happening. To ensure atomicity, consistency across
systems therefore must be enforced. Satisfying this
property across a highly distributed system is hard.4

However, horizontal scaling is ultimately superior in
terms of business process, recovery, availability, and
system elasticity. In the end, even the best mainframe
in the world eventually reaches full capacity. With the
advent of digital banking services, it is critical that
a core banking system today can be in the position
where if it needs more capacity it can just provision
for more resources on the private or public cloud,
which horizontal scaling allows. That is real elasticity.

Design Issues
Pseudo Microservices Preventing Scaling Through
Microservice Architecture

For banks adopting a Domain Oriented Microservices
Architecture type solution to overcome the
constraints of their core systems, a key challenge is
not simply breaking down their core system services
but building a true microservices architectural layer.
Not only is doing so a challenge, but not doing so
properly also brings with it its own issues.

Let us start with why this is an issue if not done
properly. Often banks have been able to break
down their services and deploy each of these to be
technically self-contained within a single container
and container image, which can be deployed
automatically. But what the platform then cannot do,
which a true microservices layer can, is to then take
this container and create n stateless instances of the
process which can run in parallel, from a common
and consistent data store.

4 In database systems, atomicity is one of the ACID (Atomicity, Consistency, Isolation, Durability)
transaction properties intended to guarantee data validity despite errors, power failures, and other
mishaps. See Wikipedia, “ACID (Atomicity, Consistency, Isolation, Durability).” Wikipedia, March
22, 2021. https://en.wikipedia.org/wiki/ACID.

9Open Banking and APIs in Asia

However, building a true microservices architectural
layer is technically an order of magnitude more
challenging than just breaking down your services
– but it is also the reason why such microservices
favor horizontal scaling. That is because building
true microservices requires banks to think about
their data store, which also must be broken down and
distributed for horizontal scaling to work.

To understand why, one must understand that to
build true microservices, banks must also stop their
reliance on what is known as “session stickiness.”
This is a solution whereby the requests for a
particular session are routed to the same physical
machine that serviced the first request for that
session. Horizontal scaling does not allow for this as
that would mean that a user’s sessions could not be
serviced from elsewhere within the bank’s application
software.

To therefore build true microservices and to enable
a user’s sessions to be serviced from elsewhere
banks must adjust both how they program and the
application logic. Everything related to the user
session itself needs to be managed inside the data
cache, not inside the application process. The data
cache itself is then replicated across the bank’s
stack to enable it to be accessed by any number of
microservices running on different virtual machines
or real servers. A function of horizontal scaling.

If you cannot break down and distribute your data
store in this way, then you will not have genuine
microservices and that means you will not be able
to have horizontal scaling. Because doing so is so
challenging banks are therefore advised to only break

down those core system services that are really facing
issues of scale into these genuine microservices.

If banks were to take their applications and
rearchitect them to be truly cloud-native based
on real microservices they would be able to better
utilize the infrastructure that they have on premises
and see savings in terms of infrastructure cost.
That is because banks currently need to provision
in additional capacity requirements to account for
surges in demand for their digital services. By not
building genuine microservices to enable horizontal
scaling, which utilizes the cloud’s elasticity, the banks
must provision for this extra capacity on premises.

Currently, on average, most of a bank’s applications
use only a fraction of the infrastructure provisioned
to them. That means that most of the money
being spent on infrastructure, on average, is not
being used. If banks could move to more cloud-
native applications, increasing their on premises
infrastructure utilization from, for example, 30% to
50%, that could represent millions in net savings a
year in terms of infrastructure cost.

However, banks that do not have the proper
microservices architecture will not be able to do
horizontal scaling, which then defeats the object of
using cloud, as the platform is then not able to fully
utilize the cloud’s capability. The process will end up
running almost identically on the cloud as it does
on premises and critically, banks will not be able to
use the elasticity of the cloud, which is its biggest
attraction. They will still have to allocate a dedicated
resource on premises in case the process needs to
consume it.

10Open Banking and APIs in Asia

Some of the more mature organizations in APAC
have realized this and are now being more selective
in terms of which workloads they want to put in the
cloud. They want to see that there will be a direct
benefit in running on the cloud model and that they
are not just moving to the cloud for the sake of it.

Customer Centric Process Design

When the Monetary Authority of Singapore (MAS)
published its “API Playbook” in November 2016, many
local banks rushed to build APIs on every system
they had to be able to claim bragging rights for being
the fastest bank to externalize their APIs or the bank
to offer the most external APIs. However, despite the
numerous APIs exposed by banks in Singapore, their
actual utilization remains comparatively low.5

The main problem, which is a general industry issue,
is that most APIs are not closely associated to a
business process understood by a third-party. This
makes them hard to consume. The APIs are often not
designed with customer flow in mind, but rather the
backend system in mind.

This is the crux of the issue and highlights both the
versatility of APIs but also the failure of banks to
unleash their full potential. By taking a customer-
centric approach to API design, banks can leverage
their power to deliver a memorable customer
experience. To do this well, however, developers must
think in terms of channel and customer journey.

Banks’ developers need to be able to articulate the
customer journey across each of their channels. To
do that, banks need to understand the context for
the customer interaction and what the channels are
used for, which will help define each channel’s data
and action needs. For each use case, the customer
journey must also be consistent across the channels.
With that in mind, once banks have understood the
customer journey and what it takes to deliver it, they
can then design the API to consistently deliver the
data or actions required to service the application or
person interacting with the customer in that channel
to deliver that journey.
5 Eroglu, Hakan, “The Asia-Pacific Way of Open Banking Regulation.” Finextra, June 20, 2019.
https://www.finextra.com/blogposting/17396/the-asia-pacific-way-of-open-banking-regulation

To that end, Mr. Arora of Standard Chartered says
that the Bank has undertaken an “API first” approach
to deliver the right business solutions. He says:

“Before creating any functionality, we think of
exposing the corresponding capability or interface
via APIs. For example, while building our state-of-
the-art payment system, we thought beforehand
what APIs will be invoked by external and internal
clients, like payment processing or payment
initiation etc. The building blocks of functionality
then followed as per the interface defined during the
API design phase.”

Ultimately, the customer journey is a process, which
a single microservice is not going to be able to deliver.
Instead, the customer journey is going to be served
by an amalgamation of microservices, guided by
the appropriate business logic. Building out and
orchestrating those microservices to deliver that
customer journey is no easy task. Indeed, Carmela
Castelao, Head of Global Open Banking Program and
Jose Navarro, Strategy Global Open Banking at BBVA
spoke of the challenge of orchestration, asking:

“Which services are required to open an account
and in what order? That may differ for each bank,
as they will have different granularity of services,
but bottom line, it is about making sure that the
relationship front to back is the correct one.”

Sandeep Malhotra, EVP of Products & Innovation
at Mastercard also agrees that delivering the correct
customer journey is difficult. He says that:

“Microservices need to be combined and made into
a composite service to fulfill an experience. But
that is the problem with “bite-sized” microservices.
Together they form a ‘meal’, but what if the first
course is good and the second is bad? That will lead
to an overall bad ‘dining’ experience.”

Instead, Mr. Malhotra says, “Banks should design
micro-experiences rather than microservices,
ensuring that each course stands out on its own.”

11Open Banking and APIs in Asia

The representative of an Australian digital bank
that we spoke to for this report also highlighted the
challenge of orchestration, saying that the structure of
the data assets and mapping of data sets is the Bank’s
biggest challenge:

“Often data needs to be applied across multiple
systems on the same single API request. When a
partner requests the Bank to create a customer
account on our platform, the orchestration of data,
entitlements, and permissions through the use of
multiple microservices, and the sequencing of those
calls throughout our ecosystem is a challenge.”

The Bank’s representative says that they must
populate that data across their core banking system,
into their customer records, and into their financial
records. They also have to register all users across
their security systems, and they need to securely
validate their external partners and vendors.
Orchestrating this correctly, the representative says,
has been one of their biggest difficulties.

Such orchestration, however, often does not get
properly addressed. Without a business process
orchestration layer which not only sequences a
number of microservices correctly, but also contains
the business logic to provide a genuinely digital
business process, banks will not be able to deliver that
end-to-end customer journey, nor will they be able to
create a digital bank.

Afterall, without business process orchestration,
banks would struggle to do digital onboarding
and the experience would be suboptimal at best.
Furthermore, while many banks claim to have an
orchestration layer, this usually refers to a purely
technical orchestration. That is quite different from
a business process orchestration, which contains the
business logic that allows your business process to be
digital.

Mr. Malhotra of Mastercard concurs. Mastercard
has recently studied designing a super-app lifestyle
application (Banking-as-a-Service) for banks, an
effort that has required the company to understand

how to orchestrate services coming in from both the
banking and the non-banking domains. Mr. Malhotra
says that business orchestration has been the primary
and biggest challenge, and it has to be approached
separately from the technical orchestration.

He says that there is often a disconnect in terms
of pure technical orchestration and business
orchestration, in part, because banks have built their
technical and workflow systems in an evolutionary
manner, creating multiple platforms over time.
The most effective way to pull them together is to
orchestrate around a desired micro experience for the
consumer. “Defining the goal as an experience rather
than a service more naturally catalyzes the digital
transformation of systems and processes required to
deliver a refined user journey,” says Mr. Malhotra.

If banks want to digitalize and open up their services,
they should consider following a process-centric
API development strategy. Here the business
process should be built first, followed by the APIs,
otherwise the business process and therefore the
customer journey will be suboptimal. To that end,
at least for external APIs, banks must always put the
customer journey front and center. That means that
FIs should look at the API initiative not purely from
the technology perspective but more from the end
customer perspective.

The representative from the digital bank, however,
says that that business process orchestration to
deliver on the end customer journey is particularly
challenging when you are building Banking-as-a-
Service. The representative says:

“It is easier if there is only one app, one set of
customers, and one context, but our challenge
was how do you satisfy many partners and their
customers in the context of the problems that they
are trying to solve and the context of what those
partners are trying to achieve?”

12Open Banking and APIs in Asia

Reliance on Third Parties to Deliver a
Consistent Quality of Service
One of the challenges with Open Banking and
working with external partners is that sometimes
delivering the required customer journey is
dependent on the quality of services provided by your
partners. It only takes one of those services to be bad
to have a knock-on effect on the customer journey
that you are looking to deliver, which goes back to Mr.
Malhotra’s dining experience analogy.

Sticking then with Mastercard, the following
highlights the potential issues that could arise when
consuming external partners’ services. The company
works with Tesco Bank in the UK, to enable Tesco
Bank consumers to come through Tesco Bank’s
platform to pay their credit card balance from any
HSBC, Barclays, RBS, or Lloyds bank accounts
that they have access to. The service displays the
customer’s account information across these banks
(aggregation) and enables the customer to determine
which accounts they want to use to then make a
payment towards their credit card bill.

The challenges for Mastercard in delivering a good
customer journey here are severalfold:

• Availability: All services need to be available at
all times. What happens if, for example, HSBC’s
system is up, but the Lloyds’ system is down
for regular maintenance? This would result in a
suboptimal user experience.

• Data integration: Not only must the exchange of
data be seamless, but it is also important to know
who has access to the data and where the request
is coming from – has it come from a domestic or
an overseas server? Knowing the provenance of
the request is important in order to comply with
GDPR and other local regulations.

• Cross-dependencies: Availability becomes
even more complicated when you are relying on
several services from each partner. In our example
above, what happens if I can see my account
information from HSBC, but I am unable to make

a transfer from my account there. The problem
here is a result of the different systems involved
in delivering the overall service that Mastercard
is offering. The account information display is
served by a microservice coming from a shadow
account on one system, whereas debiting happens
on an ATM system. One system may be up,
while the other may be down, meaning that you
therefore cannot complete the entire experience.

• Latency: The other issue in completing an
entire experience relates to the different polices
applicable to different systems, which mainly
revolve around latency. What if one system takes
longer to complete a service than another? That
will impact the overall performance of the service,
which impacts the customer’s experience – which
again takes us back to the dining analogy.

Data Issues
Data and its consumption lie at the heart of
digitalization and Open Banking. However, many
incumbents still struggle with dirty data, which
manifests in a multitude of different forms –
duplicate data, incomplete data, inaccuracies, or
inconsistencies. The patchwork of legacy systems
that most banks operate has employees entering
data into separate data silos which often rely on
separate systems. The result is duplicate data which
is often in different formats. Nearly half of banks told
researchers in a survey that creating an integrated,
consistent view of their data across the organization
is their largest data management challenge.6

Addressing these issues with dirty data is critical
for API developers and for the entities that rely on
the accuracy and consistency of such data. Take, for
example, digital onboarding. If there are duplicate
records of the same customer, where is the API
developer meant to take the customer’s data from?
There is no single source of data for that customer.
Banks should therefore take the opportunity when
building their Open Banking layer to standardize
their data flows to one single source.
6 PYMNTS, “Banks Kept On Their Toes By Dizzying Data Management Regulations.” PYMNTS.
com, December 5, 2017. https://www.pymnts.com/news/b2b-payments/2017/wolters-kluwer-bank-
data-management-regulation/.

13Open Banking and APIs in Asia

However, because of the expense involved in building
a single layer which would require synchronizing/
sanitizing all existing data, banks tend to opt
for cheaper, easier alternatives. Take identity
management for example. When introducing a
single sign-on (SSO), instead of authenticating
against a central data source where customer
credentials are stored, banks will simply introduce
yet another data store in the digital layer, which the
SSO can authenticate against. The problem with this
solution is that it does not clean up other sources
of information on the customer that might exist,
including the dirty sources. Banks, therefore, need to
go further and have a unified data layer that provides
a single source of truth on the bank’s customers.
Having such a unified layer mitigates against new
applications being forced to integrate with one of the
many, disparate identity data silos.

Security Risks/Lapses
With 76% of today’s banks citing customer data
security and privacy as their top Open Banking
concern, protecting the integrity of external APIs is
therefore critical.7 Such protection is going to require
incorporating security at the infrastructure level with
a multi-pronged approach.

Mr. Malhotra of Mastercard emphasizes that your
security and privacy must be first-rate. Trust, he says,
is a critically important element in differentiating
players in Open Banking. This is why Open Banking
developments are often accompanied by in-market
data privacy and API standardization regulations – to
ensure a baseline of consumer trust in order to drive
adoption of solutions at scale. The winning players
will both meet and strive to exceed those standards.

7 https://www.hydrogenplatform.com/blog/what-is-open-banking

14Open Banking and APIs in Asia

With security being paramount, Mastercard has a
product called Open Banking Protect that makes sure
the Third-Party Provider (TPP) is who they say they
are. In this case the TPP is Tesco Bank but tomorrow
it could be Google. Tesco Bank calls Mastercard’s
Open Banking Connect API, which checks that it is a
valid TPP by seeing whether it has the right security
certificates to do an “Individual Auth.” Mastercard
then applies further forensics to see whether the
request is coming in over a public or a private internet
and which IP it is coming in from.

Once the user has been authenticated, Mastercard
checks to see if the user has passporting rights to
reach these end customers. Mr Malhotra says, “this
is not simply a question of security. Mastercard has
rules around who has access to what data, what
services they have subscribed to, and the data that
consumers have provided consent to.” For example,
he says, “there could be a request from a valid TPP,
such as a hypothetical Tesco Bank in Singapore, but
for access to data that they do not have passporting
rights to use.”

Developer Tooling to Enable Third-Party
Development
Developer Portals

It is important for banks to understand that APIs are
an ecosystem and not just a set of endpoints that they
put out there. The Developer Portal is an essential
medium that banks can use to communicate with
developers, while providing them with the tooling
that they need to help them succeed in leveraging
their APIs. It enables the bank to say to the developer,
this is our catalogue of APIs, this is how you can
report to an API, this is the full documentation about
the API, this is how you can test it, here are some
software development kits (SDKs) and sample code,
here is a sandbox that will let you play around with
it all, and here is where you can get help. It is also
important that banks provide proper and relevant
data for testing. Often sandboxes do not include
enough sample data use-cases to validate APIs.

Mr. Arora of Standard Chartered concurs that
Developer Portals play a critical role, saying:

“To boost API usage and penetration, they need
to be made discoverable internally and externally
via respective Developer Portals, which allows
developers to try them out and enables a smooth
transition into the production environment that
accelerates adoption.”

Ms. Castelao and Mr. Navarro of BBVA however say
that once a bank has successfully “front to back”
digitalized their products, it becomes critical to deeply
understand the customer’s needs to guide them to
the right solution rather than leaving the customer to
search for the solution by themselves. This requires
an expert sales team, with a specific focus in APIs.

They say that in this regard when BBVA publishes
its APIs, they put together use cases to highlight how
the Bank has solved problems for other companies
in the past. That then enables developers to see how
a problem that may be similar to theirs has been
solved. It also creates an environment for discussion.
It enables developers to say, “I want something
similar, but I want it like this, and I also have this
other problem.” The Bank then has its experts that
know what the Bank can/could provide. It is therefore
not only about helping the customer correctly use the
APIs that the Bank offers, but it is also about creating
new services on top of what there already is.

Arvie de Vera, SVP & Head of the Fintech Group at
Union Bank of the Philippines (UnionBank) agrees
that helping the customer is key. The Bank was the
first local bank in the country to expose its banking
functionalities via APIs and promote Open Banking
and collaboration. The Bank has a dedicated API
team that proactively pitches and explains the
different API products to potential clients. This
helps product discoverability for potential new API
solutions for emerging business problems or Open
APIs that can be productized by the client. Mr. de
Vera says that the Bank’s platform is tailored to the
needs of users and is focused on the overall customer
experience. The API Developer Portal uses a Netflix-

15Open Banking and APIs in Asia

like recommendation algorithm to suggest relevant
APIs to users based on the customer’s industry and
the APIs that they have already subscribed to.8 Mr. de
Vera says, “comprehensive yet simple to use business
and technical documentation is crafted per API so
that partners can jumpstart their integration then and
there.”

Documentation

Because documentation or a lack thereof can be a
major obstacle to preventing API utilization and
penetration, it is important that we drill down
a bit further to see why that is. Ultimately, poor
documentation can lead to time delays and buggy
implementations. Documentation therefore needs
to be part of the API design process, whereby
the developer needs to think about how they are
documenting the API as they are building it.

Because developers do not know who will be
consuming the API – it could be experienced users
or someone completely new to programing – they
should always keep the end user in mind and provide
as much information as possible, including where
to get help. Documentation must also be in synch
with any changes to the API, so how it is going to be
maintained should also be a part of the API design
process.

8 developer.unionbankph.com

Given its importance it is therefore remarkable how
often documentation is either out of date, incomplete,
inaccurate, or just not useful. Poor documentation
comes in myriad forms: Endpoints of the API are left
out, there is no information on the data that needs
to be sent, and/or there is no information on the
response in terms of what data you will receive, what
it represents, and how it should be handled.

In fact, it is this lack of information on the response
which is often the key weakness in documentation.
Specifically, the error messages that you can expect
to receive and how to handle these. Good API design
should therefore incorporate standard exceptions,
whose handling should also be standardized and
explicitly defined in the documentation.

Ultimately, the process of the API needs to be clearly
communicated to the developer in the documentation
so that it is easy to understand. The bottom line
is that while writing a good API is very complex
which makes it difficult to standardize, banks can
standardize the data format and behaviors of an API.
Banks can also standardize their documentation and
handling of exceptions. From a developer’s point of
view, they will then know how the API is going to
behave.

16Open Banking and APIs in Asia

Disruptive forces across the region are forcing banks
to open up their platforms in order to consume other
players’ services or enable the external consumption
of their services by other players. Digitalization is
also forcing banks to think about how they can offer
their services online. Ultimately, this is being driven
by competition and customer expectations, which are
pressuring banks to understand the customer better
while offering more personalized and contextualized
services.

For banks to get this right, they are going to have to
move away from a centralized integration approach to
a distributed Open Banking model. This will require a
shift from a monolithic, legacy architecture to a cloud-
native, microservices-based architecture. Such a shift
will also require a new organizational structure, from
traditional, waterfall methods to agile and DevOps
approaches.

That is because legacy core systems do not fit well
with digital/Open Banking requirements. However,
upgrading core systems is an expensive, risky, and
lengthy process. Building a more modern, scalable
infrastructure that sits on top of these legacy systems
provides a solution that enables banks to become
modular and platform-based in order to effectively
collaborate with players in the financial services
ecosystem.

However, this abstraction layer is difficult to build and
to get right. Banks will want to think about creating a
true microservices layer to enable horizontal scaling.
While such horizontal scaling is difficult to achieve,
it does provide resilience, helping to mitigate against
disastrous system failures, and will enable the bank
to leverage the elasticity provisioned by the cloud.

That in turn will allow banks to save substantially on
infrastructure costs.

Banks must also ensure that APIs have been
designed with the end customer in mind rather
than the backend system in mind. That will require
articulating the customer journey across all channels
of the bank to understand the context for the
customer interaction and what the channels are used
for. Delivering that customer journey will then require
a business process orchestration layer that is not
simply able to sequence a number of microservices
correctly, but also contains the business logic to
provide a genuinely digital business process.

Getting Open API Banking right is challenging and
will also require banks to think about how they work
with external third parties, manage their data, and
security. Importantly, if banks want to ensure that
their external APIs are utilized, they will also need to
work closely with consumers through their Developer
Portals to ensure that these are finding the right
solutions. They will also want to work with these
developers to add further services where required.
Finally, banks must ensure that their documentation
includes as much information as possible so that the
developer understands the API process, its behavior,
and how to handle exceptions.

By having the correct architecture and organizational
design in place, banks can leverage digitalization and
Open Banking to engage with their customers in ways
that reach far beyond what they have been able to
do to date. That is ultimately how banks are going to
retain customers and win new ones and emerge as
victors in the new normal.

Conclusion

17Open Banking and APIs in Asia

Kapronasia is a leading provider of market research covering fintech, banking,
payments, and capital markets. From our offices and representation in
Shanghai, Hong Kong, Taipei, Seoul, and Singapore, we provide clients across
the region the insight they need to understand and take advantage of their
highest-value opportunities in Asia and help them to achieve and sustain a
competitive advantage in the market.

Please visit https://www.kapronasia.com
© 2021 Kapronasia Pte. Ltd. All rights reserved.

www.kapronasia.com

Red Hat is the world’s leading provider of enterprise open source
software solutions, using a community-powered approach to deliver
reliable and high-performing Linux, hybrid cloud, container, and
Kubernetes technologies. Red Hat helps customers integrate new and
existing IT applications, develop cloud-native applications, standardize
on our industry-leading operating system, and automate, secure, and
manage complex environments. Award-winning support, training, and
consulting services make Red Hat a trusted adviser to the Fortune 500.
As a strategic partner to cloud providers, system integrators, application
vendors, customers, and open source communities, Red Hat can help
organizations prepare for the digital future.

Please visit https://www.redhat.com

