
Container Security

As organizations accelerate modern app
deployment, the adoption of containers
and container orchestration platforms,
such as Docker and Kubernetes, is on
the rise. The container ecosystem can
be difficult to understand given the
plethora of new, esoteric tools and the
unique problems they solve when
compared to traditional platforms. At
the same time, the rapid adoption of
container technologies creates a unique
opportunity to shift security left and
build bridges between development
and security teams.

A Brief History of Modern
Computing
Modern computing history can be
characterized in three distinct waves

(see Figure 1). The first wave, during the

1990s, was defined by client–server

architectures running on bare metal

servers running a single operating system

(OS) and typically a single application.

The second wave began with

virtualization disrupting the server

market in 2001 and ushering in the age

of virtualized computing. We’re now in

the third wave of modern computing,

defined by cloud and container

technologies. Container adoption is

a result of two factors: a demand for

accelerated time-to-market enabled by

DevOps, and a desire for application

portability across clouds.

A fourth wave is now forming
but not yet widely adopted in
the enterprise: serverless or
Function as a Service (FaaS).

This fourth wave completely abstracts
compute through a hardware and OS-
agnostic model. The most recognizable
implementations of FaaS today are
Google Cloud Functions, Azure
Functions, and Amazon Web Services
(AWS) Lambda.

Cloud and Containers Go
Together Like Peanut Butter
and Jelly

The public cloud and containers are
intrinsically linked, yet many security
teams mistakenly attempt to address
container security separately from
cloud.

Over the years, developers have grown

tired of dealing with OS and application

 dependencies. Containers address this

issue but create a whole new set of

security challenges. Market demand has

grown quickly and point security products

— from commercial to open source —

have sprung up. These point products

narrowly address some container

security challenges, but they completely

miss the bigger picture. Most apps

developed on containers utilize a mix of

Platform-as-a-Service (PaaS) resources

like AWS Redshift, Google Cloud Platform

(GCP) Cloud Datastore, and Azure SQL

(Figure 2 illustrates this point). Without

complete visibility into your cloud’s

application programming interface

(API) layer, which knows exactly which

Figure 1: The evolution of modern computing.

cloud-native services are in use, how

can you accurately assess and effectively

mitigate the risk that containers introduce

in your enterprise?

Consider a scenario in which the latest
Common Vulnerabilities and Exposures
(CVE) bulletin identifies a vulnerability in
your containers, but your AWS security
group is not open on the port required to
exploit the vulnerability. Having this full
stack security knowledge dramatically
changes the risk equation but would oth-
erwise be missed by container security
point products. Why? Because they often

do not have visibility into the cloud
provider’s all-important API layer. Full
stack knowledge allows you to address
this vulnerability later and instead focus
on other vulnerabilities that are publicly
exposed and, thus, more likely to be ex-
ploited.

Embrace DevOps and Embed
Security In It
Given the speed and velocity at which
containers and cloud operate, DevSecOps
is the only viable path forward for security
teams. DevSecOps brings DevOps and
security teams together and introduces

Figure 2: Full stack cloud visibility versus siloed container visibility.

security as early as possible in the con-
tainer life cycle. This approach embeds
security across the entire container life
cycle: build, deploy, and run (see Figure 3).

Build security
Integrating security in the container build
phase means you’re introducing security
checks early on during the build phase
instead of reactively introducing security
at runtime. Build phase security should
focus on removing vulnerabilities,
malware, and insecure code. Because
containers are made up of libraries,
binaries, and application code, establish-
ing an official container registry for your

organization is critical. Undoubtedly, one
or more such registries already exist.
It’s the security team’s job to find the
registries and quickly gain buy-in around
getting access and setting security stan-
dards. The main goal of identifying and
creating a standard container registry
is to create trusted images. A process
needs to be agreed upon and automati-
cally enforced in which no container can
be deployed from an untrusted registry.

Deploy security
In the deploy phase, the focus shifts
to making sure your teams are putting
things together correctly. You can have

Figure 3: The container security triad — embedding security across the entire container life cycle.

an image that is free of vulnerabilities,
but if it ’s deployed to an insecurely
configured Kubernetes pod, you haven’t
sufficiently managed your container risk.
Deploying to a secure configuration
can be achieved by adopting a security
standard for both your orchestration
and container engine of choice. Don’t
forget to put the necessary processes
and tools (that is, guardrails) in place
that will enable you to automate and
monitor. The Center for Internet
Security (CIS) has done an excellent job
creating security benchmarks for both
Docker and Kubernetes. They should
be your starting point. If you get deploy
security right, only the “good” should
be making it into runtime.

Palo Alto Networks’ Unit 42
threat research found that
46 percent of organizations
accept traffic to Kubernetes

pods from any source. In the on-
premises world, this is equivalent to
deploying a server and then leaving
it open “any any” to the Internet. You
wouldn’t do this on-premises, so why
are almost half of all organizations do-
ing it in the public cloud?

Runtime security
Runtime security is about identifying
new vulnerabilities in running contain-
ers and knowing what normal looks
like. It also involves investigating anom-
alous and suspicious activities that
could indicate zero-day attacks. If your
security team is involved from the be-
ginning (during the build phase), get-
ting runtime security right is much less
complex. If you’re coming late to the
game and you’re reactively focusing on
runtime, its best to work backward. Yes,
it ’s important to make sure that the
end state is secure, but if your focus is
narrowly on runtime, the same issues
will likely be repeated.

The IBM Systems Sciences
Institute found that the cost
to fix a bug during the mainte-
nance phase (that is, runtime)

was 100 times more costly than a bug
fixed during design.

Taking a Holistic Approach to
Cloud and Container Security

The most recent Portworx Annual
Container Adoption Survey shows that
87 percent of enterprise IT profession-
als are using container technologies

and 90 percent of those containers are
deployed in production. Thus, container
security must be addressed as part of
a holistic enterprise cloud security strat-
egy. It’s always tempting to bolt on yet
another point security product, but
the most mature organizations see
containers as an essential component
of their cloud infrastructure. Addressing
container and cloud security separately
will leave organizations blind to risks
that an otherwise integrated strategy
would address. The most successful
enterprises treat cloud and containers
as one and the same when it comes to
security.

Check out the following
resources to learn more about
container security:

 • Secure DevOps

 • Cloud Security & Compliance For
Dummies

 • Palo Alto Networks Vulnerability
Scanner: Take advantage of this
open-source tool to start scanning
and identifying vulnerabilities in
your containers.

For Dummies is a trademark of John WiIey & Sons, Inc. ISBN: 978-1-000-00000-0

