
Running PostgreSQL
Database in a Cloud
Native Environment
with Kubernetes

P O W E R T O P O S T G R E S

Gabriele Bartolini
VP, Cloud Native

AUTHORED BY:

Leonardo Cecchi
Cloud Native PostgreSQL Lead Developer

	
EDB | WWW.EDBPOSTGRES.COM

	
02

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

1. Introduction: How and Why PostgreSQL Works			 03

 1.1 Standout features

 1.2 Running PostgreSQL on Kubernetes

2. Introducing: Cloud Native PostgreSQL 06

 2.1 How to create a Kubernetes sandbox cluster with kind

 2.2 Installing the Cloud Native PostgreSQL operator

 2.3 Deploying a minimal PostgreSQL cluster

 2.4 Services for Cloud Native PostgreSQL

 2.5 Credentials (secrets)

 2.6 How to use it from your development environment

3. Introducing: Cloud Native PostgreSQL 16

			

Contents

	
EDB | WWW.EDBPOSTGRES.COM

	
03

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

Introduction: How and Why PostgreSQL Works

PostgreSQL is a powerful, open source object-relational database system that uses and extends the SQL
language combined with many features that safely store and scale the most complicated data workloads. It has
earned a strong reputation for its proven architecture, reliability, data integrity, robust feature set, extensibility,
and the dedication of the open source community behind the software to consistently deliver performant and
innovative solutions.

PostgreSQL has become the open source relational database of choice for many people and organizations, and
was recently named Database Management System of the Year 2020 by DB-Engines. According to DB-Engines,
all of the other major relational databases—MySQL, SQLServer, Oracle, and DB2—have been in slow but steady
decline over many years. And yet, PostgreSQL continues to grow. DB-Engines data shows that PostgreSQL
is growing significantly faster than would-be rivals MongoDB and Redis.

1

https://db-engines.com/en/blog_post/85
https://db-engines.com/en/blog_post/85

	
EDB | WWW.EDBPOSTGRES.COM

	
04

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

A quick way to describe PostgreSQL is that it is the equivalent in the database area of what Linux represents

in the operating system space. The current latest major version of PostgreSQL is version 13, which ships

out of the box:

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

1.1 Standout features

In terms of architecture, PostgreSQL natively supports the primary/standby architecture, with optional and
multiple replicas. The technology behind it is very robust and it is the evolution of crash recovery and point
in time recovery. Replication was first introduced in PostgreSQL 8.2 about 15 years ago through WAL shipping
and warm standby, and later improved in PostgreSQL 9.0 through WAL streaming and Hot Standby with read
only replicas.

Further improvements include cascading replication to replicate from a standby, synchronous replication to
enable RPO=0 clusters and backups at transaction level, and logical replication. Considering that streaming
replication has been around for more than 10 years, the technology is very stable and robust and guarantees
very high results in terms of business continuity, usually measured by recovery point objective (RPO) and
recovery time objective (RTO).

Native streaming replication,
both physical and logical

Continuous hot backup and
point in time recovery

Declarative partitioning for horizontal
table partitioning

Parallel queries for vertical
scalability

JSON support, which enables the
multi-model hybrid database to store both
structured/relational and unstructured data
and query them via standard SQL

Extensibility, with extensions like
PostGIS for geographical databases

	
EDB | WWW.EDBPOSTGRES.COM

	
05

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

From the previous source, we can now explore how Postgres can be installed in Kubernetes. There are primarily
two approaches.

The first one is the basic approach: use self-healing capabilities of Kubernetes by having a pod, which is the
smallest unit of deployment in Kubernetes, running a Postgres container with no replica. The volume hosting
the Postgres data directory is mounted on the pod and it usually resides in a network storage. Kubernetes
simply restarts the pod in case of a problem, or moves it on another Kubernetes node.

The main limitation in this case is represented by the storage, which is the single point of failure. Also results
are in general not great for business continuity.

The second approach is through an operator, which is an extension of the Kubernetes controller that
defines how a complex application works in business continuity contexts. An operator is currently the state
of the art in Kubernetes for this purpose. It simulates the work of a human operator, in an automated and
programmatic way.

PostgreSQL can be classified as a complex application and as such would benefit from an operator.
An operator not only needs to deploy a cluster (which is the first step), but also to properly react after
 unexpected events. The typical example is that of a failover.

An operator relies on Kubernetes for capabilities like self-healing, scalability, high availability, updates, access,
resource control, and so on. It’s designed to be fully automated and to support declarative configuration.

This is what we wanted to do. And this is why we created Cloud Native PostgreSQL.

1.2 Running PostgreSQL on Kubernetes

	
EDB | WWW.EDBPOSTGRES.COM

	
06

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

Cloud Native PostgreSQL (CNP) is an operator for Kubernetes and OpenShift environments, distributed by
EDB, that implements the primary/standby architecture using native streaming replication. It works with both
PostgreSQL and EDB Postgres Advanced and it is designed to deploy and manage your PostgreSQL clusters
in production environments.

This does not mean that it is only useful as a production tool; it is also handy while developing applications.

Although Cloud Native PostgreSQL is primarily designed to work with containerized applications that run in
the same Kubernetes cluster and that rely on a PostgreSQL database as their backend, you can also use it
with applications that are not in a container.

Here, we’ll show the use case of any application developer that wants to easily develop, debug and test their
software against a PostgreSQL database on their local machine before hitting the staging environment.
Think, for example, about testing some applications whose database workload is split between OLTP and OLAP:
you want your OLTP traffic to be executed against the cluster primary server and to offload your OLAP traffic
on replicas. In such a case, it is far easier to deploy a PostgreSQL cluster using CNP than setting up a
PostgreSQL cluster.

Now, we’ll walk through how to:

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

Introducing: Cloud Native PostgreSQL2

Set up a Kubernetes sandbox cluster on your
local development environment using Kind

Deploy a PostgreSQL cluster in
your sandbox cluster

Connect your application to the PostgreSQL
cluster using services and secrets

Install the Cloud Native PostgreSQL operator
in your sandbox Kubernetes cluster

Use the “port-forward” command in
kubectl to expose the service outside the
sandbox cluster for development purposes

https://www.enterprisedb.com/products/postgresql-on-kubernetes-ha-clusters-k8s-containers-scalable

	
EDB | WWW.EDBPOSTGRES.COM

	
07

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

Note: This section is about installing a sandbox Kubernetes cluster on your local machine with Kind.
Feel free to skip it if you have already done it or if you already have a Kubernetes cluster at reach.

First of all, if you have not already configured it in your development environment, you will need a Docker
installation. The Install Docker Engine page on the official Docker engine website contains installation
instructions for many platforms.

To test if your Docker installation works fine you can use the hello-world image
like in the following example:

2.1 How to create a Kubernetes sandbox cluster

$ docker run --rm hello-world

This message shows that your installation appears to be

working correctly.

This means that your Docker engine is working correctly! Now it’s time to install Kind.

Kind, standing for “Kubernetes IN Docker”, is a great tool to create a Kubernetes cluster in your local
environment. The good thing about it is that, despite being lightweight, Kind is using the same executables
as a real production one. This installation is still a CNCF-conformant Kubernetes and it is a way to implement
infrastructure abstraction in your development process - which is an important DevOps capability.

You can install “kind” using your preferred package manager or by downloading it from the Releases page in
the project’s Github repository. It is important to remember to put the kind executable in a directory included
in the PATH environment variable, as this will make invoking it easier. The Quick Start page in the Kind
documentation has detailed instructions about that.

To test if Kind is installed and working properly you can run the following command:

$ kind --version

kind version 0.10.0

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/
https://github.com/kubernetes-sigs/kind/releases
https://kind.sigs.k8s.io/docs/user/quick-start

	
EDB | WWW.EDBPOSTGRES.COM

	
08

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

And now we are ready to create our first Kubernetes cluster! We do this with the following command:

$ kind create cluster

Creating cluster “kind” ...

[...]

And in just one minute we have our Kubernetes cluster ready for our tests:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

kind-control-plane Ready control-plane,master 62s v1.20.2

You can install Cloud Native PostgreSQL like any other applications in Kubernetes: using a manifest file.
You can install the latest released version of CNP (1.3.0 at the time of writing this article) by running:

2.2 Installing the Cloud Native PostgreSQL operator

$ kubectl apply -f \

 https://get.enterprisedb.io/cnp/postgresql-operator-1.3.0.yaml

namespace/postgresql-operator-system created

[...]

https://get.enterprisedb.io/cnp/postgresql-operator-1.3.0.yaml

	
EDB | WWW.EDBPOSTGRES.COM

	
09

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQLTHE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

You can check if everything is working by looking at the status of the pods
in the postgresql-operator-system namespace:

$ kubectl get pods -n postgresql-operator-system

NAME READY STATUS

RESTARTS AGE

postgresql-operator-controller-manager-5b9c5d8dbd-jnln6 1/1 Running

0 99s

The pod is running and everything is ready. You can find more information about installing Cloud Native
PostgreSQL on the Installation page of the documentation website.

While Cloud Native PostgreSQL is closed-source software, you are still granted an implicit evaluation license
that lasts for 30 days. This does not mean that after 30 days your data is lost! It only means that after 30
days the operator will stop reconciling your cluster specification with the status: self-healing features and
configuration changes will no longer work.

This can be enough to quickly test a PostgreSQL cluster while it is not certainly enough for your production
environment. More information about production plans and subscriptions can be found on the License Keys
page in the documentation.

Enough with talking, we can start deploying a cluster:

2.3 Deploying a minimal PostgreSQL cluster

$ kubectl apply -f \ https://docs.enterprisedb.io/cloud-native-post-

gresql/1.3.0/samples/cluster-example.yaml

cluster.postgresql.k8s.enterprisedb.io/cluster-example created

https://docs.enterprisedb.io/cloud-native-postgresql/1.1.0/installation/
https://docs.enterprisedb.io/cloud-native-postgresql/1.1.0/license_keys/
https://docs.enterprisedb.io/cloud-native-postgresql/1.1.0/license_keys/

	
EDB | WWW.EDBPOSTGRES.COM

	
10

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

The cluster definition referenced from the previous command is really simple:

apiVersion: postgresql.k8s.enterprisedb.io/v1

kind: Cluster

metadata:

 name: cluster-example

spec:

 instances: 3

 storage:

 size: 1Gi

All we require is a cluster with 3 replicas, each with 1 gigabyte of space. Obviously, the Cluster CRD is more
complex than this, and the defaulting webhook will complete the specification for us.

When everything will be ready you will find one Pod per instance (the operation will take a minute or so).
Just like this:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

cluster-example-1 1/1 Running 0 2m51s

cluster-example-2 1/1 Running 0 2m30s

cluster-example-3 1/1 Running 0 2m11s

	
EDB | WWW.EDBPOSTGRES.COM

	
11

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

In a traditional VM/physical environment, when accessing a PostgreSQL database from an application you
normally need an IP address or a host name. Kubernetes abstracts this and provides a kind of object for clients
to connect to a given service. Surprise, surprise … that resource in Kubernetes is called “Service”. Cloud Native
PostgreSQL automatically provides and 4 services for each cluster:

2.4 Services for Cloud Native PostgreSQL

$ kubectl get services -o name

service/cluster-sample-any

service/cluster-sample-r

service/cluster-sample-ro

service/cluster-sample-rw

If you need to work with the primary server, you can just use the cluster-example-rw service, which will
handle read&write traffic.

Instead, if you only need to read from the database you can just offload traffic to cluster-example-ro
to use replicas or to cluster-example-r to use the replicas and the primary server too. Kubernetes will
take care to keep the services synchronized with the actual PostgreSQL cluster status, following unexpected
events like failovers or planned ones such as switchovers or updates.

The following diagram shows what happens when an application uses the cluster-example-rw service.
The application writes data to the cluster primary server, which replicates it to the secondary servers:

	
EDB | WWW.EDBPOSTGRES.COM

	
12

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

The following diagram shows what happens when an application uses the cluster-example-rw service.
The application writes data to the cluster primary server, which replicates it to the secondary servers:

For read-only traffic, queries can be executed against any of the replicas. The following diagram shows
what happens when an application uses the cluster-example-ro service:

	
EDB | WWW.EDBPOSTGRES.COM

	
13

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQLTHE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

What about your credentials? Just look into the generated secrets:

2.5 Credentials (secrets)

$ kubectl get secrets -o name

secret/cluster-sample-app

secret/cluster-sample-ca

secret/cluster-sample-replication

secret/cluster-sample-server

secret/cluster-sample-superuser

secret/cluster-sample-token-5b5jm

As an application, you usually will not need superuser privileges to access PostgreSQL. A new database named
app owned by a user named “app“ has already been created for you, and you can access it using the credentials
you will find in the cluster-example-app secret.

The next command will dump your credentials (randomly generated), encoded in base64:

$ kubectl get secret cluster-example-app -oyaml -o=jsonpath={.data}

{“password”:”REDACTED”,”pgpass”:”REDACTED”,”username”:”REDACTED”}

A quick way to grab your password is:

$ kubectl get secret cluster-example-app -oyaml -o=jsonpath={.data.pass-

word}|base64 -d

REDACTED

When you deploy your application inside the same Kubernetes cluster, you will not need to do that, since you
can directly use that secret inside the Deployment of the stateless application.

	
EDB | WWW.EDBPOSTGRES.COM

	
14

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

While it is certainly possible to just exec psql within your pods to access the actual PostgreSQL instance
running inside, it is easier to map the 5432 port corresponding to a certain service to a local port.

You can do this via the following command:

2.6 How to use it from your development

$ kubectl port-forward service/cluster-example-rw 5454:5432 &

Forwarding from 127.0.0.1:5454 -> 5432

Forwarding from [::1]:5454 -> 5432

Now you can reach the PostgreSQL primary server (we used the cluster-example-rw service) using your local
5454 port. Just use the password you extracted before in the previous section:

$ psql -p 5454 -h 127.0.0.1 -U app app

Password for user app: [...]

app=> \conninfo

SSL connection (protocol: TLSv1.3, [...])

app=> select pg_is_in_recovery();

 f

(1 row)

	
EDB | WWW.EDBPOSTGRES.COM

	
15

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

It should not go unnoticed that by default SSL communication is enabled by CNP. Should you want to have your
replicas available as a local port you can just run:

$ kubectl port-forward service/cluster-example-ro 5455:5432 &

And then use port 5455:

$ psql -p 5455 -h 127.0.0.1 -U app app

Password for user app:

app=> select pg_is_in_recovery();

 t

(1 row)

As you can see, the PostgreSQL instance is in continuous recovery mode, meaning it is a replica
with Hot Standby.

The port forwarding technique works with remote clusters too, and it is surprisingly fast.

	
EDB | WWW.EDBPOSTGRES.COM

	
16

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQLTHE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

Conclusion

As you have seen, creating a sandbox Kubernetes environment with a PostgreSQL cluster is very easy,
light and quick to set up. Most importantly, it is self-contained, meaning that it can be easily turned down
at the end of your work with:

3

$ kind delete cluster

When used with PostgreSQL, the implicit 30 days usage license is suitable for local development and
testing, including automated tests in CI/CD pipelines hosted in Jenkins, Gitlab or Jenkins, to name a few.
This is an important step towards abstraction of infrastructure, which reduces variability between development,
staging and production environments and increases velocity for your products and software.

To learn more and dive deeper on how to run PostgreSQL in a cloud native environment with Kubernetes,
please check out the following blog posts on the EDB blog:

Why EDB Chose Immutable Application Containers
The 4C’s Security Model in Kubernetes
Security and Containers in Cloud Native PostgreSQL
For even more, you can visit our PostgreSQL Experts blog category and filter for Kubernetes posts.

https://www.enterprisedb.com/blog/why-edb-chose-immutable-application-containers
https://www.enterprisedb.com/blog/4cs-security-model-kubernetes
https://www.enterprisedb.com/blog/security-and-containers-cloud-native-postgresql
https://www.enterprisedb.com/blog/learn-from-postgresql-experts-by-examples-and-articles?search-term=

	
EDB | WWW.EDBPOSTGRES.COM

	
17

THE EXPERT’S GUIDE TO INTEGRATING POSTGRESQL

About EDB
PostgreSQL is increasingly the database of choice for organizations looking to

boost innovation and accelerate business. EDB’s enterprise-class software extends
PostgreSQL, helping our customers get the most out of it both on premises and in the
cloud. And our 24/7/365 global support, professional services, and training help our

customers control risk, manage costs, and scale efficiently.

With 16 offices worldwide, EDB serves over 4,000 customers, including leading
financial services, government, media and communications, and information
technology organizations. To learn about PostgreSQL for people, teams, and

enterprises, visit EDBpostgres.com.

http://edbpostgres.com/

Running PostgreSQL
Database in a Cloud
Native Environment
with Kubernetes

P O W E R T O P O S T G R E S

© Copyright EnterpriseDB Corporation 2021
EnterpriseDB Corporation
34 Crosby Drive
Suite 201
Bedford, MA 01730

EnterpriseDB and Postgre Enterprise Manager are registered trademarks
of EnterpriseDB Corporation. EDB, EnterpriseDB, EDB Postgres, Postgres
Enterprise Manager, and Power to Postgres are trademarks of EnterpriseDB
Corporation. Oracle is a registered trademark of Oracle, Inc. Other trademarks
may be trademarks of their respective owners. Postgres, PostgreSQL and
the Slonik Logo are trademarks or registered trademarks of the PostgreSQL
Community Association of Canada, and used with their permission.

