

https://portworx.com/products/portworx-enterprise

Peter Conrad

Container Storage and
Data Protection for

Applications on Kubernetes
Insights on the Changing Storage and

Data Management Landscape

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-12699-5

[LSI]

Container Storage and Data Protection for Applications on Kubernetes
by Peter Conrad

Copyright © 2022 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Michele Cronin
Production Editor: Kate Galloway
Copyeditor: Audrey Doyle

Proofreader: Nidhi Ranjalkar
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Kate Dullea

March 2022: First Edition

Revision History for the First Edition
2022-04-05: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Container Storage
and Data Protection for Applications on Kubernetes, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Portworx. See our state‐
ment of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. v

Introduction. vii

1. Why Kubernetes in Production Is Hard. 1
Automating Storage 1
Maintaining a Kubernetes Cluster 2
Storage for Another Era 3

2. Enterprise Storage for Kubernetes. 7
Kubernetes Storage Concepts 7
Software-Defined Storage 11
Connecting SDS to Kubernetes with the CSI 12
Cloud Native Storage: Bringing Scale to Kubernetes Storage 13

3. Kubernetes Performance and Security. 15
What Hasn’t Changed: Performance, Availability, and

Security Requirements 15
High Availability at a Global Scale 16
Data Mobility 17
Tuning Kubernetes Data for Enterprise-Scale Performance 18
Keeping the Cluster Secure 20

4. Data Protection for Kubernetes. 21
Kubernetes Data Protection Challenges 21
Strategies for Kubernetes Data Protection 25

iii

5. Moving to Kubernetes. 29
Challenges of Kubernetes Adoption 30
Running Large-Scale Systems on Kubernetes 31

iv | Table of Contents

Preface

This report is for DevOps engineers, platform architects, site relia‐
bility teams, and application owners with a vested interest in manag‐
ing storage for Kubernetes applications and services. The following
pages provide a discussion of the challenges of data storage for dis‐
tributed applications at scale, how to solve them, and considerations
for moving to Kubernetes.

The first chapter outlines the reasons why adopting Kubernetes in
an enterprise production environment is complex, focusing on how
traditional storage fails to meet the needs of modern cloud native
applications. A discussion of Kubernetes storage primitives follows,
including the Container Storage Interface and a brief explanation
of how software-defined storage can support Kubernetes workloads.
Following this foundation, the remaining chapters enumerate enter‐
prise data needs and strategies for meeting them with Kubernetes
storage. Topics include topology strategies for scale and efficiency,
security, and the challenges of data protection.

Read on to learn how Kubernetes changes the storage and data man‐
agement landscape, the essential elements of a Kubernetes-native
storage solution, and best practices for running stateful enterprise
applications on Kubernetes.

Acknowledgments
I would like to thank the following people at Portworx for contribu‐
ting their expertise: Sarvesh Jagannivas, Bhavin Shah, Rajiv Thakkar,
Ryan Wallner, and Andy Gower.

v

Introduction

Cloud native application architecture relies on Kubernetes, the lead‐
ing container management platform. The enterprise needs a storage
solution that can keep up with the scale and volume of data pro‐
cessed by these applications. On-premises and cloud-based storage
solutions, which were designed for traditional monolithic applica‐
tions running on virtual machines (VMs), weren’t designed to run
in cloud native environments and aren’t flexible enough to meet the
requirements of the enterprise today.

Modern applications are implemented as discrete services that can
be packaged and deployed independently in their own containers
running on separate machines. Cloud native infrastructure is elastic,
meaning it is controlled programmatically or declaratively to proac‐
tively meet changing compute needs. This design enables applica‐
tions to quickly scale up and down based on demand, but requires
nimble distributed data storage that scales along with the applica‐
tion. Traditional storage is simply not up to the task. To meet the
needs of the enterprise, Kubernetes storage must be dynamic, auto‐
mated, and application aware, and it must provide data protection in
the form of intelligent backup and recovery at the container level.

As application architecture becomes distributed, ownership of appli‐
cation components becomes more dispersed. That’s one reason why
storage policy, traditionally the domain of dedicated administrators
and managers, is becoming a shared responsibility among teams
including the application owners themselves. As a wider group takes
on these tasks, the burden of managing the complexity of provision‐
ing and maintaining storage must shift to automation.

vii

Traditional data platforms, which focus on the VM as the unit of
compute and storage, can’t effectively manage or protect storage for
distributed applications. What’s needed is a way to bring to data
storage the dynamic, distributed approach that Kubernetes brought
to compute. This report provides a foundation for understanding a
storage paradigm that makes Kubernetes data highly available and
secure, providing dynamic scale and data protection.

viii | Introduction

CHAPTER 1

Why Kubernetes in
Production Is Hard

Kubernetes is the foundation for the modern cloud native applica‐
tion architecture. By running microservices in containers, the enter‐
prise can move from a hardware-defined model, tied to physical or
virtual machines, to a software-defined paradigm that enables hori‐
zontal scale across on-premises, cloud, and hybrid environments.

When moving to Kubernetes, day one is not as straightforward as
simply deploying software. While the number of people who are
well versed in Kubernetes operations is growing, there are still chal‐
lenges. The following sections focus on three of the most significant
challenges: automating storage, maintaining a cluster, and managing
storage designed for a different computing era.

Automating Storage
Kubernetes was originally designed to handle stateless workloads,
which don’t store data or other information about previous opera‐
tions. While Kubernetes has evolved to handle stateful applications,
which store persistent data, it has not grown to automate storage the
same way it handles compute resources. Instead, Kubernetes relies
on storage that sits outside the orchestration system.

1

Automating storage is not easy, and storage administrators often
have plenty of work to do. Provisioning storage as workloads appear
and disappear, or as applications scale up and down, can be time-
consuming operations even when assisted by automation. Configur‐
ing systems to add, change, and remove resources in response to
thresholds and events is a complex job.

While Kubernetes load-balances services and requests within the
cluster, it doesn’t really know how to load-balance storage. Different
workloads, applications, and use cases have different storage usage
patterns. Storage administrators, responding dynamically to chang‐
ing storage needs, must constantly consider when and where to scale
out storage, how much and where to grow volumes, and how to
load-balance storage requests across the cluster. Without integrated
tools, it can be very difficult to automate these tasks sufficiently to
keep applications running smoothly.

In a modern DevOps software development environment, automa‐
tion is key. For the enterprise to adopt Kubernetes, it must be pos‐
sible to automatically scale, balance, and protect data as demand
changes. For the storage administrator, these are often high-touch
efforts. Managing storage capacity can be time-consuming and
disruptive to running applications. To keep efforts focused on
application development means reducing this overhead through
automation as much as possible. This requires storage platforms and
tools that are aware of each application’s API and storage require‐
ments, and are capable of managing storage automatically in ways
analogous to how Kubernetes handles compute resources.

Maintaining a Kubernetes Cluster
Kubernetes abstracts compute infrastructure for distributed cloud
native applications, decoupling them from the hardware where they
run. Hardware health, failure, and other concerns no longer bear
directly on the performance of the software. When hardware fails,
the containers that contain the software move automatically and the
application keeps running.

However, the underlying hardware that supports the cluster requires
continual monitoring to ensure availability to applications and
their users. While Kubernetes manages and moves containers in
response to changing conditions and demands, any enterprise with
an on-premises deployment in its portfolio must maintain physical

2 | Chapter 1: Why Kubernetes in Production Is Hard

servers to keep the cluster running. The IT team must ensure that
it can support the service level agreements (SLAs) that the business
requires. This involves replacing hard drives and other components
as they fail, which is a very common occurrence at scale.

This maintenance often requires migrating large pools of replicated
data from one storage infrastructure to another, which is compli‐
cated by the different needs of the various applications that use
the storage. It’s nearly impossible to achieve a significant manual
migration without downtime and without losing any application’s
operating state. An intelligent storage platform can help, easing the
task of protecting and migrating data as hardware is provisioned
and managed, or as applications move to new environments.

Storage for Another Era
Traditional applications, which run directly on physical or virtual
machines, have simpler storage needs than distributed, container‐
ized applications. Monolithic application state is often stored in a
shared, mutable table that is straightforward to back up. In fact,
some applications running on VMs rely only on local storage. In
such cases, backing up the VM is sufficient to back up not only the
application’s data but its configuration and running state as well.

Containerized applications are different. Because containers are
immutable and ephemeral, any workloads that require persistent
data must connect to an external system. Backing up a container is
not sufficient to capture persistent data, since the data doesn’t reside
in the container itself. Instead, Kubernetes provides a mechanism
for associating a unit of persistent storage with a pod, one or more
containers running on a single host node and sharing resources.

Kubernetes typically maintains a set number of replicas of every
active pod to ensure application availability. Each pod can define
one or more local or remote volumes, or cohesive units of persistent
storage space. Volumes provide the capability to persist data beyond
the lifetime of the containers or the pod itself. Multiple containers in
a pod can mount and access the same volume, so applications can
share data between containers that have different tasks. For exam‐
ple, an init container can run before the service starts, creating a
custom configuration file for the environment where the application
is running.

Storage for Another Era | 3

Initially, extending the capabilities of Kubernetes storage meant
changing the Kubernetes codebase itself. Kubernetes has deprecated
this “in-tree” approach, replacing it with an API called the Container
Storage Interface (CSI), which enables the development of storage
plug-ins without changing any Kubernetes code. The CSI provides a
way to support multiple storage interfaces that allow containerized
workloads to store persistent data on different types of externally
managed storage pools (Figure 1-1).

Figure 1-1. Kubernetes storage with the Container Storage Interface

Although this model solves some problems, it fails to bring stor‐
age into the virtualized, software-defined infrastructure where con‐
tainerized applications run. While the compute resources used by
modern enterprise applications run on application-aware infrastruc‐
ture, provisioned and managed declaratively and driven by the end
user, storage remains a physical concept tied to virtual or physical
servers. Because cloud native applications are distributed, backing
up any given VM is likely to capture partial data from multiple
applications, while failing to store complete data from any single
application.

For this reason, on-premises and cloud-based storage systems
designed for physical or virtual machines are poorly suited to the
scale and complexity of containerized applications. While containers
are software defined, disposable, replaceable, and decoupled from
hardware, traditional storage is concerned with managing pools
of physical media. Containerized applications are highly dynamic,
scaling up and down rapidly as demand changes by creating,
destroying, and moving containers automatically. Traditional stor‐
age methods don’t respond quickly enough to support these modern
architectures.

4 | Chapter 1: Why Kubernetes in Production Is Hard

For file, block, and object storage, cloud native storage solutions
emerged to orchestrate a software-defined pool of persistent storage
for access across a Kubernetes cluster, using a containerized archi‐
tecture to provide dynamic storage at scale. These solutions work
well, but they often target specific types of storage, a few filesystems,
and a selection of database services.

The enterprise needs software-defined, general-purpose storage
that’s capable of scaling up to meet the demands of big data: stream‐
ing, batch processing, transactional databases, high availability and
disaster recovery, data locality, and data mobility. To support fast
recovery time objectives, backups must incorporate all application
state, including data and configuration.

Specific application types have additional, more stringent needs. For
example, database applications need to guarantee that data trans‐
actions are ACID (atomic, consistent, isolated, and durable) and
usually require secondary indexes. Because pods are ephemeral and
movable, it is difficult to meet these guarantees in a containerized
environment.

To make Kubernetes work for the enterprise, storage solutions must
work at the container level rather than the VM level, must be aware
of Kubernetes namespaces, and must be able to back up entire
applications across VMs, including their configuration and state.

Storage for Another Era | 5

CHAPTER 2

Enterprise Storage for Kubernetes

To make Kubernetes storage ready for the enterprise, one must solve
the problems of elasticity and scale to meet the velocity and volume
of big data. Cloud native storage solutions have emerged for orches‐
trating pools of persistent storage that are software defined, mean‐
ing that they are abstracted away from the underlying hardware.
Unlike software-defined storage (SDS) solutions for VM-based envi‐
ronments, cloud native software-defined storage runs natively as
containers that can be managed by the same orchestration system
that handles application containers. This paves the way for dynamic,
elastic storage for containerized applications running on Kubernetes
at scale. This chapter discusses Kubernetes storage concepts, how
software-defined storage brings scale to Kubernetes, and how the
CSI works with software-defined storage.

Kubernetes Storage Concepts
Kubernetes represents application entities as primitives, which are
the basic Kubernetes building blocks. Primitives represent real or
logical entities so that Kubernetes can manage them as if they were
software objects. Storage is no exception. Kubernetes provides a
number of storage primitives, including the following:

PersistentVolume (PV)
A unit of persistent storage

7

PersistentVolumeClaim (PVC)
A storage request, which becomes the binding between a PV
and a pod

StatefulSet
An object that manages the identity of a set of pods

StorageClass
Describes the classes of storage the cluster offers

There are many other primitives, of course, but these four are
interesting as we consider how to bring enterprise-ready scale to
Kubernetes storage.

PersistentVolume
A PV is an object that represents storage at a specific location.
PVs provide the ability to keep data longer than the lifetime of the
workload or pod that uses the volume. PVs can store a workload’s
data on networked storage, on a cloud provider, or locally on the
pod where the workload is running (Figure 2-1).

Figure 2-1. Local, cloud, and networked PersistentVolume locations

Kubernetes manages every PV’s lifecycle, defining the following
stages:

Provisioning
A storage administrator creates the PV statically ahead of time,
or dynamically using a StorageClass, which is a resource that
provides a way for the administrator to describe the storage.

8 | Chapter 2: Enterprise Storage for Kubernetes

Binding
A PVC binds the PV to a specific container.

Use
Workloads running on the container use the PVC to access the
PV.

Release
The container removes its claim to the volume by removing the
PVC.

Retention
While the data is needed, the PV retains it, even across con‐
tainer and pod lifecycles.

Deletion and reclamation
Kubernetes deletes the data when it is no longer needed,
reclaiming the storage space for use by other volumes.

The storage administrator can provision PVs dynamically as
needed, or ahead of time based on predicted storage needs. PVs
define additional details about the data, including lifecycle policy,
routes, IP addresses, and credentials.

PersistentVolumeClaim
A PVC is both a request for storage and an identifier that establishes
a claim on the storage once it’s granted. PVs on their own are not
owned by specific applications or projects. A PVC requests access to
a PV using one of the following access modes:

ReadWriteOnce (RWO)
Read-write access by all pods on a single node

ReadOnlyMany (ROX)
Read-only access by multiple nodes

ReadWriteMany (RWX)
Read-write access by multiple nodes

ReadWriteOncePod (RWOP)
Read-write access by a single pod only

Kubernetes Storage Concepts | 9

PVs and PVCs work together as follows:

1. An application developer creates one or more PVCs describing1.
the storage resources the application needs.

2. The storage administrator can either create PVs explicitly in2.
response, or create a StorageClass that can dynamically provi‐
sion new PVs as needed.

3. Kubernetes manages the binding of PVCs to PVs.3.

Together, PVs and PVCs provide a way for pods to define requests
based on the storage requirements of their containers and applica‐
tions. The storage administrator can either configure dynamic provi‐
sioners that allocate storage and a PV in response to these requests,
or create PVs in anticipation of an application’s storage needs. When
the storage is granted, the cluster finds the PV associated with the
PVC and mounts it for the pod. In other words, the pod uses the
PVC as a volume. The PV is exclusively available to the pod as long
as it’s needed.

StatefulSet
A StatefulSet is the primitive that manages the deployment and scal‐
ing of a set of pods, maintaining a unique ID for each pod so that it
can be identified for the purposes of persistent data or networking,
or when the pod migrates to a different node. By providing unique,
persistent IDs for pods, the StatefulSet API lets administrators man‐
age the deployment and scaling of a set of pods. When individual
pods fail, the persistent IDs help restore connections between their
replacements and the existing volumes that serve them.

StorageClass
The StorageClass primitive lets the cluster administrator describe
the different classes of storage the cluster offers. Storage classes
can indicate different policies or levels of service. For example, the
administrator might set up different StorageClass objects to repre‐
sent different backup policies. Users can request a specific storage
class by name.

10 | Chapter 2: Enterprise Storage for Kubernetes

Software-Defined Storage
Just as containerized application architecture decouples application
logic from the hardware where the code runs, software-defined
storage decouples persistent data and storage policies from storage
media. SDS is distributed and hardware agnostic, and can run
in a variety of environments including the cloud. By abstracting
storage from its hardware, SDS enables the presentation of hardware
capacity to applications, users, and other clients as a unified storage
pool. SDS makes a storage administrator’s job easier immediately by
making it possible to manage a diverse assortment of different stor‐
age types consistently without worrying about the different charac‐
teristics of each type of storage (Figure 2-2).

Figure 2-2. Software-defined storage

Just as Kubernetes brings elasticity, scale, and high availability to
compute resources, SDS is the foundation for bringing these impor‐
tant characteristics to storage. Because the storage is abstracted,
it’s possible to build systems that distribute and scale storage in
different environments, integrating them with Kubernetes or other
orchestration systems and building in fault tolerance and high
availability.

The advantages for the enterprise are clear:

• Developers and users don’t need to think about storage•
hardware.

• Scale becomes a matter of on-demand provisioning.•

Software-Defined Storage | 11

• Data can be placed anywhere it is needed, regardless of the•
environment.

Because SDS presents all available physical storage as a shared pool,
the resources can be allocated efficiently, reducing wasted storage
space.

Connecting SDS to Kubernetes with the CSI
The CSI is an interface between containerized workloads and a
third-party storage layer, making it possible for cloud native appli‐
cations to create, manage, and use storage outside of Kubernetes.
The CSI makes storage available in a pool that all instances of
each application can access, keeping instances in sync and making
it possible to back up applications consistently. The CSI provides
abstracted access to Kubernetes over an interface, meaning that
third parties can create plug-ins for accessing storage systems from
Kubernetes without touching the core Kubernetes code. Using the
CSI, containerized applications can use the normal Kubernetes stor‐
age primitives on top of these storage systems (Figure 2-3).

Figure 2-3. Connecting software-defined storage to Kubernetes with
the container storage interface

The CSI gives storage vendors the freedom to design and manage
storage as they see fit, providing Kubernetes and other orchestration
platforms the freedom to provision and manage storage transpar‐
ently using native abstractions. At the time of this writing, Kuber‐
netes and the CSI don’t know how to provide application-aware

12 | Chapter 2: Enterprise Storage for Kubernetes

backups, high availability, or other functions necessary for the enter‐
prise, but the CSI makes it possible to add these capabilities at the
storage layer itself. This is where SDS comes in.

Software-designed storage is not limited by hardware or standards,
meaning that any required capabilities can be implemented and
abstracted away from the underlying mechanics. For this reason, it
doesn’t matter that the CSI is a slow-moving standard, as standards
should be. By connecting SDS to Kubernetes, the CSI makes it
possible to build Kubernetes-ready storage that is granular at the
container level, self-healing, and topology aware, without requiring
Kubernetes itself to have these capabilities.

Cloud Native Storage: Bringing Scale to
Kubernetes Storage
Adapting traditional SDS for containerized workloads is challenging
for a number of reasons.

First, because containers are dynamic and ephemeral, they require
storage that can be provisioned, attached, and deleted instantly,
whenever and wherever it is needed. For high availability, it must be
possible to create and move volumes as needed, with awareness of
topology, and to back them up regularly and automatically. Manual
storage provisioning can’t keep up with these needs at scale.

Second, the number of volumes that physical and virtual servers can
support is often insufficient for the number of pods or containers
that need storage. A single host might run hundreds of small con‐
tainers, requiring more volumes than the OS can provide.

Finally, because the point of containers is to be infrastructure agnos‐
tic, they should not care about the physical storage they’re using.
Different environments provide different types of storage, often
multiple types within a single deployment. It must be possible to
move data between storage pools without affecting the way contain‐
erized applications run.

Enter cloud native storage, a new model of SDS designed for dis‐
tributed, containerized applications. Cloud native storage runs in
containers on the cluster, meaning it can be provisioned and orch‐
estrated, offering data locality and Kubernetes-integrated features
like Stork (Storage Operator Runtime for Kubernetes) to provide

Cloud Native Storage: Bringing Scale to Kubernetes Storage | 13

https://github.com/libopenstorage/stork

storage-aware scheduling. Figure 2-4 shows how cloud native stor‐
age becomes part of Kubernetes itself.

Figure 2-4. Cloud native storage

Cloud native storage must be container aware, and all operations
must take place at the level of the application. Snapshots, backups,
compression, encryption, and other operations are not relevant to
the cluster or the storage pool as a whole, but to the container itself.
This key aspect gives operational control over data to the application
owner, relieving IT admins of the responsibility for provisioning
storage and protecting application data.

Clearly, redefining storage for Kubernetes at scale requires rethink‐
ing the nature of storage itself. To meet the needs of containerized
applications at scale, a storage paradigm must be elastic, nimble,
able to serve multiple replicas of data to multiple instances of appli‐
cation services concurrently, and decoupled from the application
logic itself. In other words, to bring scale to Kubernetes data, storage
must be cloud native, which means it must be both software defined
and containerized.

14 | Chapter 2: Enterprise Storage for Kubernetes

CHAPTER 3

Kubernetes Performance
and Security

As Kubernetes deployments become larger and more prevalent, the
enterprise is turning its focus to performance and security, which
are important for both business continuity and cost control. Per‐
formance helps save cost by maximizing infrastructure usage and
preventing unnecessary resource scaling. Security helps control cost
and ensure business continuity by protecting assets, including cus‐
tomer data and other proprietary information.

What Hasn’t Changed: Performance,
Availability, and Security Requirements
As applications have evolved from monolithic on-premises deploy‐
ments, to virtual machines, to software as a service (SaaS) and
platform as a service (PaaS) offerings running in the cloud, to
modern containerized cloud native applications, business require‐
ments haven’t changed. Enterprise applications running on Kuber‐
netes must meet nonnegotiable business requirements such as high
availability, data protection, and strict performance metrics, all
while operating across hybrid clouds or multiple data centers.

Performance requires using resources appropriately, ensuring that
there is enough capability to serve the needs of the business
without overprovisioning or overspending. Availability involves tak‐
ing hardware failures and network latency in stride, and meeting

15

SLAs without blinking an eye. Security means protecting sensitive
resources and data through encryption, access controls, and defense
in depth while making them available to people and processes with a
legitimate business case for access.

Traditional availability mostly meant uptime monitoring and alerts.
Making sure the application frontend was running was not only
sufficient to identify downtime, it was often the only available sign
of a problem. Fortunately, monolithic software was comparatively
simple, with predictable user interactions. End-to-end request mon‐
itoring was unimportant, and might have seemed absurd to IT
teams at the time. Performance was less of a concern; as long as
applications were up and behaving properly, IT and site reliability
teams were happy.

Performance, availability, and security must now be managed at the
container level.

The services that make up today’s containerized applications are
highly interdependent, meaning that the failure of one can take
down part or all of a highly complex, mission-critical application.
Keeping applications running properly involves maintaining multi‐
ple instances of critical services, load-balancing among them, and
moving or restarting them when failures occur.

High Availability at a Global Scale
Global high availability is a nonnegotiable business requirement for
the enterprise. This must go beyond keeping individual clusters run‐
ning when a few control plane nodes or worker nodes fail. Appli‐
cation state, including configuration and distributed data, must be
available without interruption everywhere it’s expected. The bottom
line is that cloud native high availability requires awareness of each
application’s persistent data, metadata, configuration, and running
state.

High availability within a cluster can be as simple as replicating
containers, volumes, and Kubernetes services so that at least a mini‐
mum number of instances of each is available continually. The goal
is to ensure that there is no single point of failure. High availabil‐
ity across local or geographical areas involves replicating data and
applications among separate data centers, either synchronously or
asynchronously. These strategies permit the enterprise to choose

16 | Chapter 3: Kubernetes Performance and Security

strategies that balance the cost of hardware or cloud resources
against the goals of the business.

The key to high availability, whether local or global, is that the
storage and data replication mechanisms are application consistent,
meaning that they capture all the data and metadata necessary to
keep services running or to restart them without interruption to the
business flow. This includes not only persistent data but application
configuration and running state as well. Simply backing up VMs or
making copies of volumes is not enough, because they only capture
part of the data any given service or application needs to continue
running. Furthermore, because individual volumes and containers
aren’t guaranteed to last, there must be a way to identify applications
and data so that the replacement instances can be associated with
each other correctly.

Data Mobility
One key to high availability is data mobility, defined as the ability
to move or replicate data quickly between clusters in a single data
center or cloud, or between clouds. This capability supports not only
high availability, but also upgrades, migrations, scaling, and disaster
recovery.

As the enterprise embraces the cloud, the importance of data mobi‐
lity becomes more and more apparent. It’s clear that a single deploy‐
ment environment or provider is no longer sufficient for all business
needs. Organizations need the flexibility to make trade-offs between
public and private clouds, on-premises servers, and edge data cen‐
ters as needed to increase agility, meet regulatory requirements for
data locality, deliver better service, and keep costs under control.

As Kubernetes comes into play, it’s crucial to be able to move large
volumes of data among diverse multicloud and hybrid cloud envi‐
ronments. While Kubernetes makes it easy to deploy applications
anywhere, it has long been more difficult to move the underlying
data. What is needed is an approach that makes it as easy to move
persistent volumes as it is to migrate application containers.

Container-native storage is half the battle. By providing data
and storage management across infrastructure types and provid‐
ers, a container-native storage pool provides a home for data in
any deployment environment. But traditional data migration and

Data Mobility | 17

replication approaches, which are time-consuming and operation‐
ally complex, aren’t up to the task of migrating data when required.
What’s needed is a container-aware data orchestration layer that
can provide the declarative automation for state that Kubernetes
provides for applications themselves. In cases where an application
moves, it’s often not practical to move all application data on short
notice. Data mobility must include the capability of moving the
most immediately important data first, to allow the application to
start working in its new location quickly by minimizing the amount
of data that must be moved.

Data mobility enables the enterprise to improve operations in a
number of ways. By moving low-priority applications to auxiliary
clusters, the enterprise can free up capacity on critical clusters,
making room for additional data or replication. Automating the
movement of data makes it easier to test new versions, promoting
workloads from development to staging clusters or maintaining two
or more live environments. When moving applications and data
among environments or taking a cluster offline to perform hard‐
ware maintenance and upgrades, data mobility is key to continuous
availability.

Tuning Kubernetes Data for Enterprise-Scale
Performance
As the enterprise drives cloud native applications to greater and
greater scale, tuning Kubernetes data is increasingly important to
balance performance, cost, and availability. Although there are
many factors that affect the performance of a Kubernetes cluster,
one of the most important is to make the right choices about data.
There are two significant considerations: overall storage configura‐
tion and data placement.

Storage configuration means determining what kind of storage
hardware you need and how you set it up. You can set up a single
storage pool or multiple pools that each define their own Storage‐
Class, for example. You’ll need to think about cost versus capacity
and speed, determine how much memory and CPU to allow for use
by the storage layer, and how many different types of storage you
will need. These questions are especially important in on-premises
data center environments, where the decisions have ramifications

18 | Chapter 3: Kubernetes Performance and Security

that can last for years. In cloud or hybrid environments, there is
more flexibility to start small and grow or change as needed.

Data placement, or data topology, refers to strategies for managing
where data is stored, usually to meet either performance or availa‐
bility goals. For maximum performance, one strategy is hyperconver‐
gence, which keeps a workload and its data together in a single node
(Figure 3-1). If the node goes down, the data is lost, but that might
be acceptable.

Figure 3-1. Hyperconverged topology

In hyperconverged topologies, storage is usually a software-defined
layer, often on commodity servers shared by the compute nodes.
Hyperconvergence is very flexible, allowing storage to scale in step
with the compute workload. However, because the failure of a single
node affects not only the workload on that server but the storage
system as well, hyperconverged topologies can be more difficult to
manage from the point of view of both operations and security.
Storing additional replicas of the data on other nodes allows a new
instance of the workload to recover to a true hyperconverged topol‐
ogy after a failure, starting from the most recent data written to the
replicas.

For higher availability, data can be separated from workloads. Keep‐
ing compute and storage nodes separate (called disaggregation) pro‐
vides slower performance but prevents loss in the event of a node
failure. For a very dynamic environment, where the number of
compute nodes increases and decreases in response to workload
demand, one strategy is to separate compute and storage into
their own clusters (Figure 3-2). This way, scaling and management

Tuning Kubernetes Data for Enterprise-Scale Performance | 19

operations in the compute cluster don’t interfere with the storage
cluster, and vice versa.

Figure 3-2. Disaggregated topology

Keeping the Cluster Secure
Modern security practices use a defense in depth strategy, which
means that multiple layers of security controls work together, pro‐
viding redundancy so that a breach in one layer doesn’t grant access
to a critical system. Cloud native security is no different: protections
at the levels of the cloud, the cluster, the container, and the code
itself build upon each other to protect applications and data from
unauthorized access.

The environment is the first layer of defense. If the data center or
cloud is secure, it is easier to protect the cluster and its services. The
cluster, in turn, must provide security mechanisms at the level of the
physical node, the VM, the container, and so on.

At the container level, services must be able to communicate
securely with SDS. Kubernetes provides mechanisms for controlling
the access privileges of containers, limiting resource usage, and pre‐
venting containers from taking dangerous or unwanted actions. The
storage layer must do its part by encrypting data both at rest and in
motion, restricting access to specific clients, and using application
and API knowledge to permit only sensible data transactions.

20 | Chapter 3: Kubernetes Performance and Security

CHAPTER 4

Data Protection for Kubernetes

Data protection encompasses a broad array of practices and con‐
cepts including high availability, backup, disaster recovery, and
other processes that support business continuity. Every enterprise
maintains and tests data protection policies and programs to min‐
imize downtime and ensure that operations can continue after a
disruption. Over the past several years, data protection has also
become an important component of compliance. In addition, data
protection strategies must provide data privacy as regulations begin
to address the substantial amount of sensitive personal data that
companies handle from day to day.

Kubernetes Data Protection Challenges
Traditional data protection was focused at the level of a physical or
virtual machine, protecting applications and data by securing the
server itself. This approach is effective for applications that run on
a single host. For containerized applications, however, protection
at the server level is insufficiently granular. Targeting the entire
server makes it impossible to separate applications, storage, and
configuration, and commingles applications that require different
data protection policies.

Only by providing data protection at the container level is it possi‐
ble to apply policies by application, container, or individual unit
of Kubernetes storage. In a Kubernetes environment, data protec‐
tion must be available at the Kubernetes resource level and must
include authentication and authorization for distributed data layers

21

throughout the cluster. Backup and disaster recovery must be inte‐
grated into the container orchestration environment itself.

Because each application is complex, and because of the large num‐
ber of applications running on an enterprise cluster, manual backup
strategies are impractical. The only way forward is automation; but
here, too, complexity reigns.

Scale
Containerized applications are all about scale, including large
amounts of data that must be processed at high velocity. Data at
scale requires backup solutions that can gather data from a wide
array of sources in diverse environments, managing and aggregating
them efficiently. These needs include the ability to back up multi‐
node and multicontainer applications, including not just the data
but application configuration and state as well.

Distributed Architecture
Cloud native architecture makes data protection challenging.
Because applications comprise loosely coupled microservices man‐
aged in containers, traditional machine-focused data protection
strategies don’t suffice. Traditional backup solutions simply capture
the entire state of the VM where an application runs. With dis‐
tributed, containerized applications this doesn’t work, because the
state itself is distributed. Figure 4-1 shows the difference between
traditional applications running on VMs and cloud native, contain‐
erized applications running on Kubernetes.

Figure 4-1. Traditional applications versus containerized applications

22 | Chapter 4: Data Protection for Kubernetes

Cloud native applications are highly distributed, often across multi‐
ple clouds in multiple geographical locations. Containerized appli‐
cation deployments frequently span public and private clouds,
sometimes on premises as well. Data protection in these environ‐
ments must be container aware and able to integrate with container
orchestration frameworks.

Namespaces
Kubernetes namespaces are a mechanism for partitioning a single
cluster into different isolated groups, either to allocate resources to
different business units or to group applications together. An IT
admin might need to back up all applications running in a particular
namespace at the same time. Because a namespace can contain a
large number of pods, it is often not practical to attempt this man‐
ually. But traditional backup tools have no awareness of the Kuber‐
netes namespace model and can’t integrate with the Kubernetes API,
leaving no alternative to taking a manual backup of every machine.

Recovery Point Objective and Recovery Time Objective
Some applications work with data that is critical in the moment.
Other applications might require long-term data fidelity while tol‐
erating momentary interruptions, or might work with data that is
neither time sensitive nor mission critical. It is sensible to treat
these applications differently, setting policies for each based on com‐
pliance, importance, and other aspects of their significance to the
business.

Each application, and each type of data, might need its own data
protection strategy, with its own recovery point objective (RPO) and
recovery time objective (RTO):

• The RPO determines backup frequency, and represents the•
recency of recoverable data.

• The RTO is the maximum amount of time allowed to resume•
operations after a disruption.

The RPO and RTO policies are determined by the potential impact
to the business of downtime, and how much data the business can
realistically afford to lose, based on the application and type of data
concerned.

Kubernetes Data Protection Challenges | 23

In a distributed application at scale, providing high availability and
recovery to meet a specific RPO and RTO often means maintaining
extra data clusters or moving high volumes of data very quickly.
To meet these goals in a modern, cloud native environment, you
need automated and application-aware tools that can work with
Kubernetes abstractions and APIs, protecting data at the container
level.

The continuous integration/continous delivery (CI/CD) pipeline is
a good example of an environment that can tolerate a moderate
RPO and RTO. Development tools are important, but they don’t
immediately impact the customer experience. For these applications,
some data loss or interruption to workflow is acceptable.

Data protection must be stricter for applications the customer
touches directly, especially those that handle sensitive customer
data. For these applications, both RPO and RTO are important.
It’s key to be able to recover data to a very recent point, and
to resolve interruptions quickly. This sometimes requires disaster
recovery across data centers, or failover from one active data center
to another.

The most critical applications are those that can’t afford any data
loss and can tolerate only very brief interruptions: transaction pro‐
cessing tools, for example. This means a very short RTO time and
an RPO of zero, which are demanding requirements to meet. This
can only be accomplished with a combination of high availability
within each cluster, backup and recovery with a compliance focus,
and multiple data centers kept in sync to enable high availability and
failover across geographical areas.

Data Protection by Application Type
Different applications not only store different data types and for‐
mats, but also employ different data policies. Database applications,
for example, store the bulk of their data in tables, but also main‐
tain application state, write application logs, and consume config‐
uration files. For a traditional application running on a VM, the
solution is easy: a backup of the VM preserves everything, including
application state. For distributed applications, this is not the case.
Backup, disaster recovery, and other data protection processes for
Kubernetes must be aware of the specific needs of applications and
APIs rather than taking a generic approach.

24 | Chapter 4: Data Protection for Kubernetes

Because application state is distributed, backup solutions must be
aware of how each application uses data, and must be able to find
and protect all the different kinds of data the application uses. For
example, an application-aware backup tool might know that a par‐
ticular application keeps a queue of pending writes in a cache, and
might ask the application to write them to disk before taking a
snapshot so that it can capture a complete view of application state.

Strategies for Kubernetes Data Protection
A Kubernetes data protection strategy must provide high availabil‐
ity, backup and recovery, and failover both within and across data
centers. These functions must be automated, application aware,
and scaled for the enterprise. Data protection must be granular
to the container level and aware of Kubernetes topology, storage,
and abstractions. Finally, any solution must be able to support the
different applications, business requirements, data, and SLAs an
enterprise might require.

Container-Aware Backup and Recovery
Traditional backup and recovery methods protect applications and
data at the machine level. By backing up the machine, it is possible
to restore the previous running state of the applications on the
machine. This approach works well for an application that runs
discreetly on a single host, but it doesn’t work for a microservices-
based application distributed in containers that span multiple nodes
in a cluster. For this reason, you must be able to locate the appli‐
cation’s data across the cluster to create an application-consistent
backup, meaning that the process makes copies of all the applica‐
tion’s volumes and state at once. Application-consistent backups
require domain-specific knowledge of the application to locate all
volumes and capture application state properly. Failure to back up
data in an application-aware way can lead to data corruption and
loss.

A Kubernetes backup tool must be able to integrate with the Kuber‐
netes API, be aware of Kubernetes compute and storage resources,
and have the ability to map cluster topology so that it can back up
groups of pods or entire namespaces. Finally, a Kubernetes backup
tool must be aware of the different requirements for different appli‐
cations and be able to capture and restore not just persistent storage

Strategies for Kubernetes Data Protection | 25

but application state and configuration as well. In other words, the
system must know how to treat different Kubernetes objects that
comprise the application, rather than attempting to back up the
nodes themselves.

As cloud native architecture takes hold, data protection is mov‐
ing from IT to a shared responsibility among multiple teams,
including application owners. Where traditional backup was cen‐
tralized, container-aware backup provides application owners with
role-based self-service capabilities, including the ability to set their
own backup policies and rules to ensure backups are application
consistent.

Containerized applications are designed for scale, and backup solu‐
tions must be able to scale with them. A single application can scale
to thousands of objects, and an enterprise might run hundreds or
thousands of such applications. A Kubernetes backup solution must
handle many thousands of objects and storage volumes.

Data Protection Within a Single Data Center
Data protection in a single Kubernetes cluster entails ensuring high
availability of the Kubernetes components and applications, and
maintaining the appropriate data replication. This mainly means
setting up Kubernetes to avoid a single point of failure for any
service or volume.

Replication strategies vary by application type and business require‐
ments. Simple applications, which don’t handle their own replica‐
tion, rely on the underlying storage layer to be available without fail.
When the data those applications handle is ephemeral and of low
value, it may be acceptable to keep only one copy, on the assumption
that failure of the node where the volume resides will not have
much impact. For more important data, of course, the storage layer
should be configured to provide adequate replication, both for data
protection and for availability. For data that is important and in
high demand, more replicas across more clusters can serve a larger
number of clients with lower latency. Some applications handle their
own replication. For these applications, the job of the storage is
mainly to provide replacement storage in the event that a volume
(or its node) fails.

26 | Chapter 4: Data Protection for Kubernetes

Disaster Recovery Across Data Centers
A comprehensive data protection strategy should complement pro‐
tection within the data center with failover and disaster recovery
to secondary or standby clusters located in different data centers.
In this scenario, an active cluster replicates data and configuration
to a standby cluster using a timeline determined by RPO and RTO
requirements, keeping it in sync so that it can take over if the active
cluster fails. Figure 4-2 shows replication from one data center to
another.

Figure 4-2. Replication from an active cluster to a standby cluster in a
separate data center

When replicating data to another data center, it’s important to
be aware of the receiving cluster’s topology so that replicas are
distributed appropriately among nodes, for both performance and
security reasons. The replicated data must provide highly available,
performant access while guarding against loss in case of node
failures.

There are two strategies for keeping the data centers in sync: syn‐
chronous replication, for data that requires stringent RPO and RTO
times or immediate failover; and asynchronous replication, for data
that can tolerate some loss or unavailability.

Synchronous replication ensures that all of the data written to the
active cluster is replicated in the standby cluster. A write to the
active cluster is considered complete only when the write to the
standby cluster is complete as well. This approach is challenging
because it requires very low latency to maintain write performance,
but the benefit is that it enables an RPO of zero to support

Strategies for Kubernetes Data Protection | 27

mission-critical data such as transactions. In environments where
sufficiently low latency is impossible, you must be able to set migra‐
tion policies at the level of individual volumes and objects, allowing
less critical data to replicate asynchronously to save bandwidth.

Asynchronous replication replicates data from one cluster to
another on a schedule, which doesn’t guarantee that the clusters
are completely in sync but saves network bandwidth. Applications
that can tolerate moderate amounts of data loss or downtime can
use asynchronous replication to achieve the appropriate RPO and
RTO. The RPO depends on the recency of data that is guaranteed
to be copied from the active cluster to the standby cluster. The RTO
depends on how much time it takes to restore the application to full
functioning in the case that the active cluster becomes unavailable.

28 | Chapter 4: Data Protection for Kubernetes

CHAPTER 5

Moving to Kubernetes

In today’s world, consumers and business customers alike demand
increasing speed. Complex, modern applications must deliver better
results more quickly in areas like personalization, artificial intelli‐
gence, and fraud detection across verticals. Centrally managed and
human-operated applications are a drain on struggling IT teams and
provide diminishing returns; traditional application architecture
can’t keep up with today’s huge data volume, global deployment,
and demand for horizontal scale.

PaaS and SaaS are paradigms that work best when they are elastic,
scaling up and down to meet unpredictable demand. Unlike tradi‐
tional monolithic on-premises applications, PaaS and SaaS must
scale horizontally, adding physical or virtual resources immediately
when needed. Because adding physical on-premises servers is often
a slow process with a long lead time, this means that modern appli‐
cations must be able to run anywhere: in on-premises environments,
in cloud environments, or in hybrid environments that consist of a
combination of the two.

The answer that has emerged is to break up applications into
microservices running in containers. This introduces complexity
beyond what IT teams can be asked to manage manually, necessi‐
tating automated management, provisioning, load balancing, and
fault resolution. These requirements are essentially the feature list of
Kubernetes. Kubernetes is a platform that orchestrates collections of
containers in a variety of environments, making it possible to build
cloud native, microservices-based apps and run them anywhere. For

29

this reason, Kubernetes has become the dominant way that compa‐
nies deploy applications at scale.

Even when DevOps teams have all the skills they need to run a pro‐
duction Kubernetes cluster, data storage remains challenging. Every
application and service has its own storage needs, metadata, and
way of handling state. Every kind of data has its own requirements
around security, scalability, compliance, and availability. If that isn’t
enough, the sheer number of applications and data types required
for the enterprise means exponentially more complexity.

Challenges of Kubernetes Adoption
Few enterprises are starting from scratch. A typical enterprise runs
large numbers of legacy applications originally designed to run
on physical servers or VMs. While cloud native, containerized
applications are the clear path forward, it isn’t practical to imme‐
diately abandon all the legacy applications that are powering the
organization.

Adopting Kubernetes means investing in cloud native, containerized
applications while supporting more traditional application archi‐
tectures. Providing separate storage for both types of software is
impractical both because of operational cost and because it slows
down data processing. There are two approaches that can help:
running containers inside VMs, or running VMs inside containers.
An advantage of the latter approach is that it allows Kubernetes
to manage the VMs where traditional applications are running,
moving them as needed.

Persistent storage is paramount for every organization as data vol‐
ume grows. The enterprise requires seamless management of vast
quantities of data, with stringent needs around data security, high
availability, and disaster recovery. Data must be available in multiple
locations, geographically controllable for compliance, and highly
performant. Designed originally for stateless processes, Kubernetes
isn’t natively suited to the data needs of enterprise companies.

30 | Chapter 5: Moving to Kubernetes

To run applications at scale, the enterprise needs Kubernetes. But
to run Kubernetes at scale, companies also need strategies to pro‐
vide an underlying storage layer, decoupled from compute contain‐
ers, which can support the needs of complex, large-scale business
applications.

Running Large-Scale Systems on Kubernetes
The key to running Kubernetes at scale is the ability to opti‐
mize resource allocation as demand changes, automatically scaling
resources and services up and down as needed. Although Kuber‐
netes lets you declaratively automate cluster management and com‐
pute resources, you still need additional tools to efficiently manage
storage.

An important factor is to ensure that storage is allocated properly
and not wasted. Because block storage was not originally designed
for use by massive numbers of containers, resource efficiency in
Kubernetes can be challenging. Out of the box, Kubernetes offers
a limited number of volumes per host and doesn’t provide a wide
range of tools for capabilities such as failover, backup, and disaster
recovery. This often leads to overprovisioning of block storage by
a factor of two or three, and a resultant decrease in application
efficiency.

On the public cloud, providers generally limit the number of block
devices that can be attached to a single VM, leading to another kind
of overprovisioning. If a VM has enough compute power to serve
more containers than the provider allows, it becomes necessary at
some point to provision an additional VM for storage. This drives
up compute cost and increases management overhead.

Data portability becomes a more important part of managing stor‐
age resources at scale. To maximize operational storage efficiency,
it must be possible to move workloads to the most cost-effective
storage. This means the enterprise must be able to move data
and applications nimbly between environments, across providers,
or from one team to another. Hyperconverged topology can help
reduce cost and complexity, making it easier to scale.

Software-defined storage, which abstracts away individual hardware
and presents all available storage as a single pool, is one important
component in running Kubernetes efficiently at scale, because it can

Running Large-Scale Systems on Kubernetes | 31

support traditional applications as well as containerized workloads.
You still need to make decisions about the underlying compute and
storage hardware. Just running the compute and storage platforms
requires a minimum set of resources on every node. Above that
floor, you must make decisions about how much work each node
should be capable of, such as:

• How many apps will run on each node•
• How many containers each node will support•
• How much CPU each container gets•

For the same total cluster workload, you must decide whether to run
a smaller number of more powerful nodes, or a larger number of
less powerful nodes.

Cloud and hybrid environments make these questions easier to
answer, because they allow you to start small and grow as needed
by provisioning more compute and storage resources. There is no
way to anticipate the needs of every possible application and work‐
load. It’s impossible to plan a cluster that will work for everyone.
By provisioning only what’s needed and scaling as you grow, you
can continually tailor Kubernetes at scale to meet the needs of the
enterprise.

One of the most time-intensive and disruptive aspects of Kubernetes
in production is storage capacity management. In highly dynamic
environments, storage needs can be extremely volatile, making
storage nearly impossible to manage without sophisticated tools
and automation. The right storage management solution can help
you provision storage intelligently to avoid waste while scaling on
demand.

Ultimately, the goal of running large-scale Kubernetes deployments
is to serve enterprise applications, including PaaS and SaaS. These
deployments must meet demands for data security, portability, com‐
pliance, locality, and availability, among others. Kubernetes can’t
meet these business-critical needs without help. To meet the data
needs of the marketplace, you need a coordinated storage layer
that can manage the reliability and performance of container vol‐
umes, providing high availability, replication, storage tiering, dis‐
aster recovery, backup, and the other features that the modern
enterprise application demands.

32 | Chapter 5: Moving to Kubernetes

About the Author
Peter Conrad is a technical writer with diverse content development
experience, ranging from consumer electronics and telecommunica‐
tions to IoT and enterprise software, in both hardware and software
environments. He has cultivated strong interpersonal skills from
interviewing and collaborating with diverse subject matter experts;
from showcasing technology effectively for different audiences; as a
liaison obtaining reviews and approvals of documentation; and as a
user advocate.

	Cover
	Portworx
	Copyright
	Table of Contents
	Preface
	Acknowledgments

	Introduction
	Chapter 1. Why Kubernetes in Production Is Hard
	Automating Storage
	Maintaining a Kubernetes Cluster
	Storage for Another Era

	Chapter 2. Enterprise Storage for Kubernetes
	Kubernetes Storage Concepts
	PersistentVolume
	PersistentVolumeClaim
	StatefulSet
	StorageClass

	Software-Defined Storage
	Connecting SDS to Kubernetes with the CSI
	Cloud Native Storage: Bringing Scale to Kubernetes Storage

	Chapter 3. Kubernetes Performance and Security
	What Hasn’t Changed: Performance, Availability, and Security Requirements
	High Availability at a Global Scale
	Data Mobility
	Tuning Kubernetes Data for Enterprise-Scale Performance
	Keeping the Cluster Secure

	Chapter 4. Data Protection for Kubernetes
	Kubernetes Data Protection Challenges
	Scale
	Distributed Architecture
	Namespaces
	Recovery Point Objective and Recovery Time Objective
	Data Protection by Application Type

	Strategies for Kubernetes Data Protection
	Container-Aware Backup and Recovery
	Data Protection Within a Single Data Center
	Disaster Recovery Across Data Centers

	Chapter 5. Moving to Kubernetes
	Challenges of Kubernetes Adoption
	Running Large-Scale Systems on Kubernetes

	About the Author

